Return to search

Reservoir Applications of Arced Labyrinth Weirs

In recent years, magnitudes of flood estimates used in hydraulic design have increased for many reservoirs. Consequently, many existing spillways are now deficient as they do not meet current discharge capacity requirements. To rehabilitate existing, fixed-width spillways, labyrinth weirs are often viable solutions. For reservoir applications, arcing labyrinth weirs into the reservoir increases hydraulic efficiency. This results from better cycle orientation to the approaching flow field.
This study supplements available arced labyrinth weir hydraulic data by observing flow characteristics of three laboratory-scale physical models and two numerical (CFD) models. Physical model results provide head (energy)-discharge data and empirical coefficients for hydraulic design. Results also show that increasing the arc angle improves efficiency at H/P<0.3, where H/P is upstream piezometric head divided by weir height; after which, efficiency improvements diminish as downstream submergence also increases.
The purpose of the CFD analysis was to assess the appropriateness of CFD as a design tool for arced labyrinth weir head-discharge relationship development. The CFD model results found good agreement with the physical model data indicating CFD’s usefulness as a hydraulic design tool; however, it is recommended that CFD models be calibrated to reliable laboratory or field data.
This study’s data may be used, with sound engineering judgement, to aid in hydraulic design of arced labyrinth weirs

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8835
Date01 December 2019
CreatorsThompson, Seth D.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0019 seconds