Tese (livre-docencia) - Universidade Estadual de Campinas, Faculdade de Engenharia de Limeira / Made available in DSpace on 2018-07-20T02:28:36Z (GMT). No. of bitstreams: 1
Schiozer_Dayr_LD.pdf: 3172213 bytes, checksum: a2fb9eaeac34de71f3c9e26199b587b6 (MD5)
Previous issue date: 1985 / Resumo: Este trabalho tem como objetivo estabelecer diretrizes para o projeto de dirigíveis, no que diz respeito ã influência da forma na resistência ao arrasto. É também feita uma indicação sobre as possibilidades de exploração da sustentação dinâmica no projeto. Acreditando muito que ao dirigível está reservado um importante papel no transporte de passageiros e carga, no capítulo 1, apresentamos breves considerações sobre as áreas de conhecimento, que devem ser entrelaçadas na pesquisa e desenvolvimento de veículos: escoamentos e técnicas de otimização para sistemas de transporte. No capítulo 2, procuramos esclarecer os nossos objetivos mostrando as limitações deste trabalho. Assim, apresentando a multiplicidade de critérios que norteiam a escolha da forma - aerodinâmica, estrutura e arranjo, principalmente - introduzimos o dirigível, comparando-o, sob alguns aspectos, a helicópteros e aviões. Finalmente, foram bem frisadas as limitações e os objetivos: não tratamos de análise de sistema de transporte e, sequer, do estabelecimento de critério geral para projeto de veículo; tratamos, única e exclusivamente, da análise de relação entre forma e resistência de arrasto, para corpos axissimétricos com indicações genéricas sobre sustentação dinâmica. Os objetivos ficaram claros: 19) Busca da geometria ótima no que concerne a arrasto, 29) Penalidades impostas no arrasto, quando se foge do ponto ótimo; 39) Análise e indicação dos aspectos que relacionam sustentação à forma. No capítulo 3, expõe-se a situação do problema, sob dois aspectos. Na primeira parte, procuramos apresentar as razoes da estagnação de pesquisa e desenvolvimento de dirigíveis durante quase meio século. A seguir, situamos o problema no que diz respeito a estudos que relacionem arrasto e sustentação ã forma: escassos, não sistemáticos e pouco confiáveis. As dificuldades de ensaios, sob semelhança dinâmica, nos indicam adotar os bons resultados obtidos com uma série sistemática de corpos de revolução, ensaiados para utilização em projetos submarinos: a serie 58. No capítulo 4, estabelece-se o processo de analise. O critério e o valor mínimo do arrasto específico por unidade de volume. O modelo matemático cria uma função objetivo; a busca é feita, com técnicas de otimização não lineares, para diversos pares de valores volume de velocidade, fixando o meio numa dada altitude e variando a geometria; também consideramos a posição da secção de área máxima, assim como os raios da curvatura da proa e da popa. Para a sustentação, a análise não é sistemática e se resume apenas num caso estudo. Os resultados são apresentados no capítulo 5, discutidos no capítulo 6 e as conclusões expostas no 7 .Nestes , fica evidenciado que: a) o valor ótimo da geometria independe de volume, de velocidade e de altitude; b) tal valor corresponde a um coeficiente prismático de 0,60 e um índice de esbeltez de 7,4; c) as penalidades em arrasto são pequenas, quando nos distanciamos, não muito, da geometria ótima, em decorrência do achatamento da função objetivo; d) características aerodinâmicas de arrasto podem ser sacrificadas, se houver exigências rigorosas de aspectos de manobra e de outras estruturais; c) a sustentação dinâmica, conseguida por vôo não axial, não e vantajosa no aspecto consumo de combustível; f) a resposta final de viabilidade econômica de sustentação dinâmica só pode ser dada após estudos que englobem todos os custos; g) é necessário analise de geometria não axissimetricas / Abstract: The purpose of this work is to establish the frameworks for airship design, concerning the relations between shape and drag. It also indicates the possibilites in exploring lift actions as design condition. We strongly believe that in the near future, the airship will be in full operation for cargo and passenger transportation. Then, in chapter I we introduce brief considerations about the fields which must be connected with the research and development of vehicles: fluid flows and optimization techniques for transportation systems. In chapter 2, we show a clear picture of our purpose, presenting restricting our work to a well defined area. Therefore, the multiplicity of criteria which govern the choice of shape - fluid dynamics, structure and general arrangement, mainly - we introduce the airship compared, in some aspects, to airplanes and helicopters. Finally we set forth the restrictions and our purposes: we will not analyse transportation systems and, even less, we will try to establish general criteria for unit vehicle design; we are restricted to the analysis of the connections between shape and drag for streamlined bodies of revolution, with additional surveys on lifting considerations. The purpose was clear: 1st: search on shape concerning drag aspects; 2nd: penalt1es on drag when the shape goes away from the optimum; 3rd: analysis and indication of relations between shape and lift. In chapter 3, we show the state of the art for the problem, in two aspects. The first one indicates the reasons why airship development was so inactive throughout almost half a century. The second shows the situation of research on drag and lift for streamlined bodies: scarces, not systematic and doubtful. The natural difficulties on testing under dynamic similarity conditions, suggest us to use model the results obtained on tests with a systematic series of streamlined bodies of revolution applied to the design of high speed submarines: Série 58. In chapter 4, we settle the method of analysis. The criterion is to find the best shape for minimum drag value, on the basis of equal displacement volume. We established the objective function; the search is developed using non linear optimization techniques; for several pairs volume - speed and fixed static fluid conditions, the shape is analysed through the variation of fineness ratio and prismatic coefficient; we also considered position of maximum area section as well as tai 1 and nose radius. For lift considerations the analysis is not systematic. The results are presented in chapter 5, discussed in chapter 6 and conclusions are established in chapter 7. Then, it is possible to point out that: a) The optimum shape is independent of volume, speed and altitude; b) the optimum corresponds to a prismatic coefficient close to 0,.60 and a fineness ratio around 7,4; c) the penalties on drag are small when the shape goes not so far away from the optimum, as a consequence of the flatten shape of the objective function; d) the aerodynamic considerations of drag can be sacrified if there are stronger reasons concerning structure and maneuvering; e) the lift that results from non axial flight is not advantageous in respect to fuel consumption; f) final answers about economical aspects of the lift under non axial flights can be stated only when complete analysis is conducted based on general economic criterion; g) it is necessary to keep doing some research on non symmetrical shapes / Tese (livre-docencia) - Univer / Livre Docente em Engenharia Mecânica
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/264813 |
Date | 20 July 2018 |
Creators | Schiozer, Dayr, 1936- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS |
Publisher | [s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia de Campinas, Programa de Pós-Graduação em Engenharia Mecânica |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 139 f., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds