Return to search

Rozpoznávání pojmenovaných entit pomocí neuronových sítí / Neural Network Based Named Entity Recognition

Title: Neural Network Based Named Entity Recognition Author: Jana Straková Institute: Institute of Formal and Applied Linguistics Supervisor of the doctoral thesis: prof. RNDr. Jan Hajič, Dr., Institute of Formal and Applied Linguistics Abstract: Czech named entity recognition (the task of automatic identification and classification of proper names in text, such as names of people, locations and organizations) has become a well-established field since the publication of the Czech Named Entity Corpus (CNEC). This doctoral thesis presents the author's research of named entity recognition, mainly in the Czech language. It presents work and research carried out during CNEC publication and its evaluation. It fur- ther envelops the author's research results, which improved Czech state-of-the-art results in named entity recognition in recent years, with special focus on artificial neural network based solutions. Starting with a simple feed-forward neural net- work with softmax output layer, with a standard set of classification features for the task, the thesis presents methodology and results, which were later used in open-source software solution for named entity recognition, NameTag. The thesis finalizes with a recurrent neural network based recognizer with word embeddings and character-level word embeddings,...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:368176
Date January 2017
CreatorsStraková, Jana
ContributorsHajič, Jan, Černocký, Jan, Konopík, Miloslav
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0017 seconds