Return to search

Програмски оквир заснован на машинском учењу за аутоматизацију обраде резултата фотоакустичних мерења / Programski okvir zasnovan na mašinskom učenju za automatizaciju obrade rezultata fotoakustičnih merenja / MACHINE LEARNING-BASED SOFTWARE FRAMEWORK FOR THEAUTOMATION OF PHOTOACOUSTIC MEASUREMENT DATAPROCESSING

<p>Главни задатак истраживања приказаног у дисертацији је развој модела,<br />заснованог на алгоритмима машинског учења, који описује сложени<br />утицај мерног система на користан, експериментални сигнал са циљем<br />његове елиминације. Студија случаја је широко распрострањена<br />фотоакустична, трансмисиона мерна метода са ћелијом минималне<br />запремине. Мултидисциплинарност и комплексност проблема одредили<br />су следеће кораке у методологији решења: 1) развој софтвера за<br />генерисање симулираних експерименталних података, 2) развој<br />регресионог модела заснованог на трослојној неуронској мрежи, за<br />прецизну и поуздану карактеризацију детектора која се извршава у<br />реалном времену, 3) развој класификационог модела заснованог на<br />неуронској мрежи једноставне структуре за прецизну и поуздану<br />предикцију типа коришћеног детектора која се извршава у реалном<br />времену, 4) спрезање регресионог и класификационог модела уз развој<br />додатног софтвера за прилагођење модела стварном експерименту. На<br />овај начин заокружен је програмски оквир који извршава сложени задатак<br />издвајања &ldquo;правог&rdquo; сигнала oд изобличеног експерименталног сигнала<br />без ангажовања истраживача, односно извршава аутокорекцију.<br />Тестирање је извршено на више различитих детектора и више<br />различитих материјала у фотоаксустичном експерименту. Применом<br />развијеног програмског оквира конкурентност експерименталне технике<br />је знатно порасла: повећана је тачност и поузданост, проширен је мерни<br />опсег и смањено време обраде резултата мерења.</p> / <p>Glavni zadatak istraživanja prikazanog u disertaciji je razvoj modela,<br />zasnovanog na algoritmima mašinskog učenja, koji opisuje složeni<br />uticaj mernog sistema na koristan, eksperimentalni signal sa ciljem<br />njegove eliminacije. Studija slučaja je široko rasprostranjena<br />fotoakustična, transmisiona merna metoda sa ćelijom minimalne<br />zapremine. Multidisciplinarnost i kompleksnost problema odredili<br />su sledeće korake u metodologiji rešenja: 1) razvoj softvera za<br />generisanje simuliranih eksperimentalnih podataka, 2) razvoj<br />regresionog modela zasnovanog na troslojnoj neuronskoj mreži, za<br />preciznu i pouzdanu karakterizaciju detektora koja se izvršava u<br />realnom vremenu, 3) razvoj klasifikacionog modela zasnovanog na<br />neuronskoj mreži jednostavne strukture za preciznu i pouzdanu<br />predikciju tipa korišćenog detektora koja se izvršava u realnom<br />vremenu, 4) sprezanje regresionog i klasifikacionog modela uz razvoj<br />dodatnog softvera za prilagođenje modela stvarnom eksperimentu. Na<br />ovaj način zaokružen je programski okvir koji izvršava složeni zadatak<br />izdvajanja &ldquo;pravog&rdquo; signala od izobličenog eksperimentalnog signala<br />bez angažovanja istraživača, odnosno izvršava autokorekciju.<br />Testiranje je izvršeno na više različitih detektora i više<br />različitih materijala u fotoaksustičnom eksperimentu. Primenom<br />razvijenog programskog okvira konkurentnost eksperimentalne tehnike<br />je znatno porasla: povećana je tačnost i pouzdanost, proširen je merni<br />opseg i smanjeno vreme obrade rezultata merenja.</p> / <p>The main task of the research presented in this dissertation is the development<br />of the model based on machine learning algorithms, which describes the<br />complex influence of the measuring system on a useful, experimental signal,<br />with the aim of the elimination of this influence. The case study is a widespread<br />photoacoustic, transmission measurement method with minimum volume cell<br />configuration. Multidisciplinarity and complexity of the problem determined the<br />following steps in the solution methodology: 1) development of the software for<br />generating simulated experimental data, 2) development of the regression<br />model based on a three-layer neural network, for precise and reliable<br />characterization of detectors, performed in real time, 3) development of the<br />classification model based on a neural network of simple structure for precise<br />and reliable prediction of the type of detector in use, performed in real time, 4)<br />coupling of the regression and the classification model with the development<br />of additional software for adjustment of the model to a real experiment. In this<br />way, the program framework is completed, which performs the complex task<br />of extracting the &quot;true&quot; signal from the distorted experimental signal without the<br />involvement of researchers, performing, thus, the autocorrection. Testing was<br />performed on several different detectors and several different materials in a<br />photoacoustic experiment. With the application of the developed software<br />framework, the competitiveness of the experimental technique has<br />significantly increased: the accuracy and the reliability have been increased,<br />the measurement range has been expanded and the processing time of<br />measurement results has been reduced.</p>

Identiferoai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)114956
Date30 October 2020
CreatorsJordović Pavlović Miroslava
ContributorsKupusinac Aleksandar, Ivetić Dragan, Popović Marica, Gajić Dušan, Dragan Dinu
PublisherUniverzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, University of Novi Sad, Faculty of Technical Sciences at Novi Sad
Source SetsUniversity of Novi Sad
LanguageSerbian
Detected LanguageUnknown
TypePhD thesis

Page generated in 0.0037 seconds