Return to search

Distributed Optimization Through Deep Reinforcement Learning

Reinforcement learning methods allows self-learningagents to play video- and board games autonomously. Thisproject aims to study the efficiency of the reinforcement learningalgorithms Q-learning and deep Q-learning for dynamical multi-agent problems. The goal is to train robots to optimally navigatethrough a warehouse without colliding.A virtual environment was created, in which the learning algo-rithms were tested by simulating moving agents. The algorithms’efficiency was evaluated by how fast the agents learned to performpredetermined tasks.The results show that Q-learning excels in simple problemswith few agents, quickly solving systems with two active agents.Deep Q-learning proved to be better suited for complex systemscontaining several agents, though cases of sub-optimal movementwere still possible. Both algorithms showed great potential fortheir respective areas however improvements still need to be madefor any real-world use. / Förstärkningsinlärningsmetoder tillåter självlärande enheter att spela video- och brädspel autonomt. Projektet siktar på att studera effektiviteten hos förstärkningsinlärningsmetoderna Q-learning och deep Q-learning i dynamiska problem. Målet är att träna upp robotar så att de kan röra sig genom ett varuhus på bästa sätt utan att kollidera. En virtuell miljö skapades, i vilken algoritmerna testades genom att simulera agenter som rörde sig. Algoritmernas effektivitet utvärderades av hur snabbt agenterna lärde sig att utföra förutbestämda uppgifter. Resultatet visar att Q-learning fungerar bra för enkla problem med få agenter, där system med två aktiva agenter löstes snabbt. Deep Q-learning fungerar bättre för mer komplexa system som innehåller fler agenter, men fall med suboptimala rörelser uppstod. Båda algoritmerna visade god potential inom deras respektive områden, däremot måste förbättringar göras innan de kan användas i verkligheten. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-293878
Date January 2020
CreatorsFunkquist, Mikaela, Lu, Minghua
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2020:133

Page generated in 0.0022 seconds