Return to search

Spectral models for color vision

This thesis introduces a maximum entropy approach to model surface reflectance spectra. A reflectance spectrum is the amount of light, relative to the incident light, reflected from a surface at each wavelength. While the color of a surface can be in 3D vector form such as RGB, CMY, or YIQ, this thesis takes the surface reflectance spectrum to be the color of a surface. A reflectance spectrum is a physical property of a surface and does not vary with the different interactions a surface may undergo with its environment. Therefore, models of reflectance spectra can be used to fuse camera sensor responses from different images of the same surface or multiple surfaces of the same scene. This fusion improves the spectral estimates that can be obtained, and thus leads to better estimates of surface colors. The motivation for using a maximum entropy approach stems from the fact that surfaces observed in our everyday life surroundings typically have broad and therefore high entropy spectra. The maximum entropy approach, in addition, imposes the fewest constraints as it estimates surface reflectance spectra given only camera sensor responses. This is a major advantage over the widely used linear basis function spectral representations, which require a prespecified set of basis functions. Experimental results show that surface spectra of Munsell and construction paper patches can be successfully estimated using the maximum entropy approach in the case of three different surface interactions with the environment. First, in the case of changes in illumination, the thesis shows that the spectral models estimated are comparable to those obtained from the best approach which computes spectral models in the literature. Second, in the case of changes in the positions of surfaces with respect to each other, interreflections between the surfaces arise. Results show that the fusion of sensor responses from interreflection / Cette thèse introduit une approche par entropie maximale pour la modélisation des spectres de réflectance de surface. Un spectre de réflectance est la quantité de lumière, relative à la lumière incidente, réfléchie d'une surface à chaque longueur d'onde. Bien que la couleur d'une surface puisse prendre la forme d'un vecteur 3D tel que RGB, CMY ou YIQ, cette thèse prend le spectre de réflectance de surface comme étant la couleur d'une surface. Un spectre de réflectance est une propriété physique d'une surface et ne varie pas avec les différentes interactions que peut subir une surface avec son environnement. Par conséquent, les modèles de spectres de réflectance peuvent être utilisés pour fusionner les réponses de senseurs de caméra provenant de différentes images d'une même surface ou de multiples surfaces de la même scène. Cette fusion améliore les estimés spectraux qui peuvent être obtenus et mène donc à de meilleurs estimés de couleurs de surfaces.La motivation pour l'utilisation d'une approche par entropie maximale provient du fait que les surfaces observées dans notre environnement habituel ont typiquement un spectre large et donc à haute entropie. De plus, l'approche par entropie maximale impose le moins de contraintes puisqu'elle estime les spectres de réflectance de surface à l'aide seulement des réponses de senseurs de caméra. Ceci est un avantage majeur par rapport aux très répandues représentations spectrales par fonctions de base linéaires qui requièrent une série pré-spécifiée de fonctions de base.Les résultats expérimentaux montrent que les spectres de surface de taches de surface de Munsell et de papier de construction peuvent être estimés avec succès en utilisant l'approche par entropie maximal dans le cas de trois différentes interactions de surfaces avec l'environnement. D'abord, dans le cas de changements dans l'illumination, la t

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.66750
Date January 2009
CreatorsSkaff, Sandra
ContributorsJames J Clark (Internal/Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Electrical and Computer Engineering)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.002 seconds