Denna rapport jämför prestandan mellan state-of-the-art AI-botar i racing spelet TORCS och en AI-bot som kör med hjälp av ett artificiellt neuralt nätverk (ANN-bot). ANN-boten, som implementerades som en del av arbetet, använder en feedforward arkitektur och backpropagation för inlärning. Ett separat program som användes för att träna det neurala nätverket med träningdata som spelats in från TORCS implementerades också. Som state-of-the-art AI-botar användes AI-botar som har använts i en tävling. De fyra AI-botarna testades på åtta olika banor och data om hur lång tid varje varv tog och hur snabbt AI-botarna körde sparades och sammanställdes. Resultaten visar att på banorna som ANN-boten klarar av att köra runt så är ANN-boten snabbare än en den långsamaste state-of-the-art boten, men ANNboten klara inte av majoriteten av banorna som den testades på. Anledning till detta var antagligen brist på varierande träningsdata.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-4831 |
Date | January 2013 |
Creators | Karlsson, Simon, Jensen, Christopher |
Publisher | Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds