Return to search

Beamforming and Protection Strategies in Gaussian MISO Wiretap Systems with Partial Channel State Information

Within this thesis, we investigate the possibilities of physical layer secrecy for two special system models. In detail, we study beamforming and protection strategies in the Multiple-Input Single-Output (MISO) Gaussian Wiretap Channel (WTC) and the Gaussian two-hop relay WTC with multiple antennas at transmitter and receiver. In both system models, we examine the influence of partial Channel State Information (CSI) on the link to the eavesdropper and compare the achievable secrecy rates with the case of full CSI.

We show for the MISO WTC that in the fast fading scenario the Beamforming Vector (BV) can be optimized such that the ergodic secrecy rate is maximized with regard to the degree of channel knowledge. Further we show that the ergodic secrecy rate can be significantly increased by usage of Artificial Noise (AN), if applied in a smart way. This means that the degree of channel knowledge on the link to the eavesdropper influences the portion of power that is spent for AN at the transmitter as well as the direction, in which the AN signal is sent. In addition, we apply the same beamforming and protection strategies to the slow fading scenario and find that these techniques also reduce the secrecy outage probability.

For the two-hop relay WTC, we introduce Information Leakage Neutralization (IN) as a new protection strategy. If applied to a system model, where the transmitter has full CSI, the instantaneous secrecy rate performs almost as well as the instantaneous capacity of the peaceful system without an eavesdropper. The IN protected scheme outperforms the AN protected approach and performs much better than any beamforming scheme without additional protection mechanism. Another positive aspect of the IN protected scheme in the case of full CSI is that conventional channel codes can be applied instead of wiretap codes. For the case of partial CSI, where the transmitter has only an outdated estimate on the channel between relay and the eavesdropper, we show that the IN protected scheme can also be applied. Here, it strongly depends on the channel realizations and the delay of the estimate, whether the IN or the AN protection scheme should be applied. / In dieser Arbeit wird das Leistungsvermögen der Sicherheit auf der physikalischen Schicht anhand von zwei speziellen Systemmodellen untersucht. Im Detail werden Beamforming- und Absicherungsstrategien im gaußschen Multiple-Input Single-Output (MISO) Wiretap Channel (WTC) und dem gaußschen Two-hop Relay WTC mit mehreren Antennen am Sender und Empfänger studiert. In beiden Systemmodellen wird der Einfluss von partieller Kanalkenntnis zum Abhörer betrachtet und die so erreichbaren Sicherheitsraten mit denen verglichen, die bei voller Kanalkenntnis erreichbar sind.

Für den MISO WTC kann gezeigt werden, dass für Kanäle mit schnellem Schwund der Beamforming-Vektor in Hinblick auf die ergodische Sicherheitsrate unter Berücksichtigung des Grades der Kanalkenntnis optimiert werden kann. Zudem kann durch die intelligente Verwendung von künstlichem Rauschen (Artificial Noise, AN) die ergodische Sicherheitsrate signifikant erhöht werden. Hierbei nimmt der Grad der Kanalkenntnis direkt Einfluss auf die Aufteilung der Leistung zwischen Daten- und AN-Signal am Sender sowie auch auf die Richtung, in der das AN-Signal gesendet wird. Zudem kann gezeigt werden, dass dieselben Beamforming- und Absicherungsstrategien ebenfalls die Sicherheitsausfallwahrscheinlichkeit für Kanäle mit langsamem Schwund minimieren.

Im gaußschen Two-hop Relay WTC wird Information Leakage Neutralization (IN) als neuartige Absicherungsstrategie eingeführt. Diese Absicherungsstrategie erreicht nahezu dieselben instantanen Raten wie ein friedvolles System ohne Abhörer, wenn es bei voller Kanalkenntnis am Sender eingesetzt wird. Weiterhin sind durch die IN-Absicherungsstrategie höhere Raten erreichbar als durch den Einsatz von AN. Zusätzlich kann im Fall von voller Kanalkenntnis auf den Einsatz von Wiretap-Codes verzichtet werden. Auch im Fall partieller Kanalkenntnis, wo der Sender nur eine veraltete Schätzung des Kanals zwischen Relay und Abhörer besitzt, kann gezeigt werden, dass die IN-Absicherungsstrategie angewendet werden kann. Hierbei hängt es jedoch stark von den Kanalrealisierungen und dem Alter der Kanalschätzung ab, ob die IN- oder die AN-Absicherungsstrategie bessere Ergebnisse bringt und daher angewandt werden sollte.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-172869
Date24 August 2015
CreatorsEngelmann, Sabrina
ContributorsTechnische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, Prof. Dr.-Ing. Eduard A. Jorswieck, Prof. Dr.-Ing. Aydin Sezgin
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0027 seconds