Return to search

[en] APPROXIMATE NEAREST NEIGHBOR SEARCH FOR THE KULLBACK-LEIBLER DIVERGENCE / [pt] BUSCA APROXIMADA DE VIZINHOS MAIS PRÓXIMOS PARA DIVERGÊNCIA DE KULLBACK-LEIBLER

[pt] Em uma série de aplicações, os pontos de dados podem ser representados como distribuições de probabilidade. Por exemplo, os documentos podem ser representados como modelos de tópicos, as imagens podem ser representadas como histogramas e também a música pode ser representada como uma distribuição de probabilidade. Neste trabalho, abordamos o problema do Vizinho Próximo Aproximado onde os pontos são distribuições de probabilidade e a função de distância é a divergência de Kullback-Leibler (KL). Mostramos como acelerar as estruturas de dados existentes, como a Bregman Ball Tree, em teoria, colocando a divergência KL como um produto interno. No lado prático, investigamos o uso de duas técnicas de indexação muito populares: Índice Invertido e Locality Sensitive Hashing. Os experimentos realizados em 6 conjuntos de dados do mundo real mostraram que o Índice Invertido é melhor do que LSH e Bregman Ball Tree, em termos
de consultas por segundo e precisão. / [en] In a number of applications, data points can be represented as probability distributions. For instance, documents can be represented as topic models, images can be represented as histograms and also music can be represented as a probability distribution. In this work, we address the problem of the Approximate Nearest Neighbor where the points are probability distributions and the distance function is the Kullback-Leibler (KL) divergence. We show how to accelerate existing data structures such as the Bregman Ball Tree, by posing the KL divergence as an inner product embedding. On the practical side we investigated the use of two, very popular, indexing techniques: Inverted Index and Locality Sensitive Hashing. Experiments performed on 6 real world data-sets showed the Inverted Index performs better than LSH and Bregman Ball Tree, in terms of queries per second and precision.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:33305
Date19 March 2018
ContributorsEDUARDO SANY LABER
PublisherMAXWELL
Source SetsPUC Rio
LanguageEnglish
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.0024 seconds