Based upon experimental evidence from the 1970’s we proposed that a reduced form of hydroxocobalamin should be capable of producing carbon dioxide (CO2) from carbon monoxide (CO) in blood, and that this conversion should be detectable. Using resonance raman spectroscopy we demonstrated that a mixture of hydroxocobalamin and ascorbic acid could create the reduced form of hydroxocobalamin. We used a closed-loop circulation system with a hollow-fiber membrane oxygenator to produce carboxyhemoglobin. Using sensitive gas monitoring equipment to the gas-out port of the oxygenator we analyzed the CO and CO2 concentrations coming from the oxygenator. The mixture of hydroxocobalamin and ascorbic acid caused a 5-fold increase in the CO2 concentration of the gas-out flow, in comparison to baseline and negative controls. These findings offer initial support for the potential use of a mixture of hydroxocobalamin and ascorbic acid as an injectable antidote for carbon monoxide poisoning.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-1468 |
Date | 10 April 2013 |
Creators | Roderique, Joseph |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.002 seconds