Return to search

Studium podmínek vzniku a eliminace akrylamidu vznikajícího při tepelném zpracování potravin. / Study of Formation and Elimination of Acrylamide in Food Matrix during Heat Treatment.

Acrylamide (AA) is a probable human carcinogen and undesirable contaminant which is produced by the reaction of reducing sugars with asparagine in plant foods during their thermal treatment above 120 °C. AA is most often determined by GC-MS and LC-MS/MS in isolates from the matrix in a wide range of foods. According to our observations, AA intake from food is higher among young people (from 1.8 to 3.8 µg/kg bw/day), which is consistent with the estimations of JECFA FAO/WHO from the year 2006. Considering the health risk, it is recommended to reduce AA formation in food during its processing, in particular exploiting the available experience. The aim of this thesis was to extend the knowledge of the possibility of AA elimination in selected types of thermally processed foods. The study was focused on cereal foods that contribute significantly to AA exposure, especially bread and sweet biscuits. The whole AA content in the bread is in the crust, which represents 5-15% of the bread. Crust of home-made bread contains approximately 30-75 µg/kg, however the marketed bread contains 2 to 10 times more of AA. This is due to the composition of bread mix, preparation conditions and baking. For maintaining the quality of home-made bread during the dry mixture shelf-life, optimization of bread mixtures was designed by increasing of yeast content, which proved positive effect on the reduction of AA content at sufficiently high activity of the yeast. Monitoring of AA content in assortment of sweet bakery products showed higher levels of AA in diabetic biscuits containing fructose instead of sucrose. Three of them even exceeded the reference value (500 µg/kg) more than 1.5 times for commodity "cookies". Elimination of AA by applications of the enzyme asparaginase has been designed for minimal interference in technology of their production. The concentration of the enzyme and the appropriate method of its use in industrial environment have been tested previously in model systems. In optimized conditions of the enzyme application, AA content in diabetic biscuits was reduced by more than 40% without affecting the organoleptic properties of the final product. Effect of the antioxidants on AA formation was also part of the study. AA content in gingerbread was reduced efficiently by the use of fennel, anise, cloves, vanilla and white pepper (by about 9-21%). Conversely, coriander and cinnamon significantly increased its content (by 18-54%). Since correlations between the DPPH• radical quenching activity of the spice extracts and AA content was not observed, the final content of AA was probably influenced by the chemical composition of spices and reactivity of the individual components in the matrix. Investigated methods appear to be suitable ways of elimination AA in some foods; however their specific use must be optimized with regard to the composition of the food, processing and the technology used. Estimated impact of application of the above-mentioned methods to the overall elimination of AA exposure showed that its intake in high school students from the Czech and Slovak Republic can be reduced on average by 10%. This decrease is a success to reduce the possible risk of cancer disease by eating foods with a high AA content. It is also important piece of information for food producers for further development of relevant methods for AA elimination which would help to reduce the AA intake from foods even more.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:233366
Date January 2013
CreatorsMarková, Lucie
ContributorsJarošová, Alžběta, Buňka, František, Šimko, Peter
PublisherVysoké učení technické v Brně. Fakulta chemická
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0018 seconds