Return to search

Design and Synthesis of Serine and Aspartic Protease Inhibitors

<p>This thesis describes the design and synthesis of compounds that are</p><p>intended to inhibit serine and aspartic proteases. The first part of the text deals with preparation of inhibitors of the hepatitis C virus (HCV) NS3 serine protease. Hepatitis C is predominantly a chronic disease that afflicts about 170 million people worldwide. The NS3 protease, encoded by HCV, is essential for replication of the virus and has become one of the main targets when developing drugs to fight HCV. The inhibitors discussed here constitute surrogates for the widely used <em>N</em>-acyl-hydroxyproline isostere designated 4-hydroxy-cyclopentene. The stereochemistry of the 4-hydroxy-cyclopentene scaffold was determined by nuclear overhauser effect spectroscopy (NOESY) and the regiochemistry by heteronuclear multiple bond correlation (HMBC). The scaffold was decorated with different substituents to obtain both linear and macrocyclic HCV NS3 protease inhibitors that display low nanomolar activity. The second part of the thesis describes the design and synthesis of potential aspartic protease inhibitors. The hydroxyethylene motif was used as a noncleavable transition state isostere. The synthetic route yielded a pivotal intermediate with excellent stereochemical control, which was corroborated by NOESY experiments. This intermediate can be diversified with different substituents to furnish novel aspartic protease inhibitors.</p> / Report code: LIU-TEK-LIC-2006:45

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-7372
Date January 2006
CreatorsWångsell, Fredrik
PublisherLinköping University, Linköping University, Organic Chemistry, Institutionen för fysik, kemi och biologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, text
RelationLinköping Studies in Science and Technology. Thesis, 0280-7971 ; 1264, ;

Page generated in 0.0023 seconds