Thermal and fatigue cracking are pavement distresses that deteriorate asphalt pavements in Canada. However, the current AASHTO M320 standard specification protocol does not give satisfactory correlation between the properties measured in the laboratory to thermal and fatigue cracking performance of the asphalt in service. This thesis is aimed at validating the newly developed MTO LS-299 and LS-308 specification test methods for predicting pavement distress. A secondary objective is to determine how well laboratory-aged and field-aged binders correlate with each other in terms of their chemical and physical properties. Chemical testing using infrared (IR) spectroscopy and X-ray fluorescence (XRF), as well as physical and mechanical testing using the regular bending beam rheometer (BBR), extended BBR (eBBR), dynamic shear rheometer (DSR), and double edge notched tension (DENT) tests were performed on laboratory-aged and recovered binders from Highway 417.
Asphalt cements with significant amounts of waste engine oil residues as determined by XRF data were found to have cracked severely due to their high tendency for chemical aging. Western Canadian binders modified with styrene-butadiene-styrene polymer showed low affinity for both chemical and physical aging as determined from their carbonyl indices. Asphalt binders with smaller paraffinic structures exhibited insignificant pavement deterioration while the opposite occurred to those with low aromatic indices according to their IR data. The DSR data show that chemical aging occurs much faster in the laboratory-aged binders than the field-aged binders. The DENT test is able to separate superior performing binders from inferior ones with 86% accuracy according to their CTOD data. The regular BBR gave poor correlation between the laboratory test methods and the performance of the pavements. Good correlation exists between the laboratory test methods and the performance of the pavements in service according to the eBBR data. Pavements without any cracks showed lower grade losses, while pavements with severe thermal cracking recorded higher grade losses after three days of conditioning prior to testing. The study has shown that the eBBR and DENT tests are better tools for predicting pavement performance and provide good specification tests for the control of thermal and fatigue cracking in modern pavements. / Thesis (Master, Chemistry) -- Queen's University, 2012-02-28 13:16:02.222
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/7021 |
Date | 29 February 2012 |
Creators | AGBOVI, HENRY KWAME |
Contributors | Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.)) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. |
Relation | Canadian theses |
Page generated in 0.0078 seconds