Return to search

Isolation of genes encoding heat shock protein 70 (hsp70s) from the coelacanth, Latimeria chalumnae

Under stress conditions, proteins unfold or misfold, leading to the formation of aggregates. Molecular chaperones can be defined as proteins that facilitate the correct folding of other proteins, so that they attain a stable tertiary structure. In addition, they promote the refolding and degradation of denatured proteins after cellular stress. Heat shock proteins form one of the main classes of molecular chaperones. We are interested in determining if the genome of the coelacanth (Latimeria chalumnae) encodes a heat shock protein-based cytoprotection mechanism. We have isolated 50 kb and larger coelacanth genomic DNA from frozen skin tissue of L. chalumnae. From the alignments of several fish Hsp70 proteins, conserved regions at the N- and C-termini were identified. Codon usage tables were constructed from published coelacanth genes and degenerate primers were designed to isolate the full-length hsp70 gene and regions encoding the ATPase and the peptide binding domains. Since it is known that the tilapia and Fugu inducible hsp70 genes are intronless, we proceeded on the assumption that a coelacanth inducible hsp70 would also be intronless. A large fragment (1840 bp) encoding most of a coelacanth Hsp70 protein, and two partial fragments encoding a coelacanth Hsp70ATPase domain (1048 bp) and peptide binding domain (873 bp), were isolated by polymerase chain reaction amplification. Protein sequences translated from all the nucleotide sequences were closely identical to typical Hsp70s. This is the first study to provide evidence for a cytoprotection mechanism in the coelacanth involving an inducible Hsp70.

Identiferoai:union.ndltd.org:Rhodes/oai:eprints.ru.ac.za:136
Date11 1900
CreatorsModisakeng, K.W., Dorrington, R.A., Blatch, G.L.
Source SetsRhodes University SA
Detected LanguageEnglish
TypeArticle, PeerReviewed
Formatapplication/pdf
Relationhttp://eprints.ru.ac.za/136/

Page generated in 0.0016 seconds