Return to search

Extração de tópicos baseado em agrupamento de regras de associação / Topic extraction based on association rule clustering

Uma representação estruturada dos documentos em um formato apropriado para a obtenção automática de conhecimento, sem que haja perda de informações relevantes em relação ao formato originalmente não-estruturado, é um dos passos mais importantes da mineração de textos, pois a qualidade dos resultados obtidos com as abordagens automáticas para obtenção de conhecimento de textos estão fortemente relacionados à qualidade dos atributos utilizados para representar a coleção de documentos. O Modelo de Espaço de Vetores (MEV) é um modelo tradicional para obter uma representação estruturada dos documentos. Neste modelo, cada documento é representado por um vetor de pesos correspondentes aos atributos do texto. O modelo bag-of-words é a abordagem de MEV mais utilizada devido a sua simplicidade e aplicabilidade. Entretanto, o modelo bag-of-words não trata a dependência entre termos e possui alta dimensionalidade. Diversos modelos para representação dos documentos foram propostos na literatura visando capturar a informação de relação entre termos, destacando-se os modelos baseados em frases ou termos compostos, o Modelo de Espaço de Vetores Generalizado (MEVG) e suas extensões, modelos de tópicos não-probabilísticos, como o Latent Semantic Analysis (LSA) ou o Non-negative Matrix Factorization (NMF), e modelos de tópicos probabilísticos, como o Latent Dirichlet Allocation (LDA) e suas extensões. A representação baseada em modelos de tópicos é uma das abordagens mais interessantes uma vez que elas fornece uma estrutura que descreve a coleção de documentos em uma forma que revela sua estrutura interna e as suas inter-relações. As abordagens de extração de tópicos também fornecem uma estratégia de redução da dimensionalidade visando a construção de novas dimensões que representam os principais tópicos ou assuntos identificados na coleção de documentos. Entretanto, a extração é eficiente de informações sobre as relações entre os termos para construção da representação de documentos ainda é um grande desafio de pesquisa. Os modelos para representação de documentos que exploram a correlação entre termos normalmente enfrentam um grande desafio para manter um bom equilíbrio entre (i) a quantidade de dimensões obtidas, (ii) o esforço computacional e (iii) a interpretabilidade das novas dimensões obtidas. Assim,é proposto neste trabalho o modelo para representação de documentos Latent Association Rule Cluster based Model (LARCM). Este é um modelo de extração de tópicos não-probabilístico que explora o agrupamento de regras de associação para construir uma representação da coleção de documentos com dimensionalidade reduzida tal que as novas dimensões são extraídas a partir das informações sobre as relações entre os termos. No modelo proposto, as regras de associação são extraídas para cada documento para obter termos correlacionados que formam expressões multi-palavras. Essas relações entre os termos formam o contexto local da relação entre termos. Em seguida, aplica-se um processo de agrupamento em todas as regras de associação para formar o contexto geral das relações entre os termos, e cada grupo de regras de associação obtido formará um tópico, ou seja, uma dimensão da representação. Também é proposto neste trabalho uma metodologia de avaliação que permite selecionar modelos que maximizam tanto os resultados na tarefa de classificação de textos quanto os resultados de interpretabilidade dos tópicos obtidos. O modelo LARCM foi comparado com o modelo LDA tradicional e o modelo LDA utilizando uma representação que inclui termos compostos (bag-of-related-words). Os resultados dos experimentos indicam que o modelo LARCM produz uma representação para os documentos que contribui significativamente para a melhora dos resultados na tarefa de classificação de textos, mantendo também uma boa interpretabilidade dos tópicos obtidos. O modelo LARCM também apresentou ótimo desempenho quando utilizado para extração de informação de contexto para aplicação em sistemas de recomendação sensíveis ao contexto. / A structured representation of documents in an appropriate format for the automatic knowledge extraction without loss of relevant information is one of the most important steps of text mining, since the quality of the results obtained with automatic approaches for the text knowledge extraction is strongly related to the quality of the selected attributes to represent the collection of documents. The Vector Space model (VSM) is a traditional structured representation of documents. In this model, each document is represented as a vector of weights that corresponds to the features of the document. The bag-of-words model is the most popular VSM approach because of its simplicity and general applicability. However, the bag-of-words model does not include dependencies of the terms and has a high dimensionality. Several models for document representation have been proposed in the literature in order to capture the dependence among the terms, especially models based on phrases or compound terms, the Generalized Vector Space Model (GVSM) and their extensions, non-probabilistic topic models as Latent Semantic Analysis (LSA) or Non-negative Matrix Factorization (NMF) and still probabilistic topic models as the Latent Dirichlet Allocation (LDA) and their extensions. The topic model representation is one of the most interesting approaches since it provides a structure that describes the collection of documents in a way that reveals their internal structure and their interrelationships. Also, this approach provides a dimensionality reduction strategy aiming to built new dimensions that represent the main topics or ideas of the document collection. However, the efficient extraction of information about the relations of terms for document representation is still a major research challenge nowadays. The document representation models that explore correlated terms usually face a great challenge of keeping a good balance among the (i) number of extracted features, (ii) the computational performance and (iii) the interpretability of new features. In this way, we proposed the Latent Association Rule Cluster based Model (LARCM). The LARCM is a non-probabilistic topic model that explores association rule clustering to build a document representation with low dimensionality in a way that each dimension is composed by information about the relations among the terms. In the proposed approach, the association rules are built for each document to extract the correlated terms that will compose the multi-word expressions. These relations among the terms are the local context of relations. Then, a clustering process is applied for all association rules to discover the general context of the relations, and each obtained cluster is an extracted topic or a dimension of the new document representation. This work also proposes in this work an evaluation methodology to select topic models that maximize the results in the text classification task as much as the interpretability of the obtained topics. The LARCM model was compared against both the traditional LDA model and the LDA model using a document representation that includes multi-word expressions (bag-of-related-words). The experimental results indicate that LARCM provides an document representation that improves the results in the text classification task and even retains a good interpretability of the extract topics. The LARCM model also achieved great results as a method to extract contextual information for context-aware recommender systems.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-02122015-161054
Date29 May 2015
CreatorsFabiano Fernandes dos Santos
ContributorsSolange Oliveira Rezende, Gustavo Enrique de Almeida Prado Alves Batista, Heloisa de Arruda Camargo, Alexandre Plastino de Carvalho, Alípio Mário Guedes Jorge
PublisherUniversidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds