Return to search

Baicalein induces apoptosis in human astrocytoma cells via a pro-oxidant mechanism.

Yeung, Tak Wai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 181-197). / Abstracts in English and Chinese. / Abstract (English) --- p.i / Abstract (Chinese) --- p.iv / Acknowledgements --- p.vi / List of Publications --- p.vii / Presentation --- p.vii / List of Abbreviations --- p.viii / Abbreviations in Figures --- p.xiii / Abbreviations in Symbols --- p.xiv / List of Cell Lines Used in this Study --- p.xv / Table of Contents --- p.xvi / List of Figures --- p.xxv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Cellular Redox State and Cancer Biology --- p.1 / Chapter 1.2 --- Reactive Oxygen Species (ROS) --- p.1 / Chapter 1.3 --- Regulation of Cellular Redox State by Intrinsic and Extrinsic Antioxidant Systems --- p.5 / Chapter 1.3.1 --- Intrinsic Antioxidant System --- p.6 / Chapter 1.3.2 --- Extrinsic Antioxidant System --- p.8 / Chapter 1.4 --- Glutathione --- p.9 / Chapter 1.4.1 --- General Information of Glutathione --- p.9 / Chapter 1.4.2 --- Functions of Glutathione --- p.12 / Chapter 1.4.2.1 --- As an Antioxidant and Free Radical Scavenger --- p.12 / Chapter 1.4.2.2 --- As a Detoxifier --- p.13 / Chapter 1.4.2.3 --- As a Regulator of Cell Signaling --- p.14 / Chapter 1.4.3 --- Synthesis of Glutathione --- p.15 / Chapter 1.4.4 --- Catabolism of Glutathione --- p.15 / Chapter 1.4.5 --- Transport and Uptake of Glutathione --- p.16 / Chapter 1.4.6 --- Glutathione in Cancer Biology --- p.18 / Chapter 1.4.6.1 --- "Role of Glutathione in the Regulation of Carcinogenesis, Growth and Apoptosis of Cancer Cells" --- p.18 / Chapter 1.4.6.1.1 --- Role of Glutathione in Carcinogenesis --- p.18 / Chapter 1.4.6.1.2 --- Role of Glutathione in the Growth of Cancer Cells --- p.20 / Chapter 1.4.6.1.3 --- Role of Glutathione in Apoptosis of Cancer Cells --- p.21 / Chapter 1.4.6.2 --- Role of Glutathione in the Regulation of Metastasis --- p.23 / Chapter 1.4.6.3 --- Role of Glutathione in Cancer Resistance and Therapy --- p.24 / Chapter 1.4.6.3.1 --- Role of Glutathione in Cancer Resistance --- p.24 / Chapter 1.4.6.3.2 --- Role of Glutathione in Cancer Therapy --- p.24 / Chapter 1.5 --- Aims of the Present Study --- p.25 / Chapter Chapter 2 --- In Vitro Study of Bαicαlein and Baicalin on Glutathione Depletion --- p.28 / Chapter 2.1 --- Introduction --- p.28 / Chapter 2.1.1 --- Scutellaria bαicαlensis Georgi --- p.28 / Chapter 2.1.1.1 --- General Clinical Applications to Treat or Prevent Diseases --- p.28 / Chapter 2.1.1.2 --- As an Antioxidant and Free Radical Scavenger --- p.29 / Chapter 2.1.1.3 --- Long History for Treatment of Cancers with the Obscure Mechanism --- p.30 / Chapter 2.1.1.4 --- Major Components --- p.31 / Chapter 2.1.2 --- Baicalein and Baicalin --- p.32 / Chapter 2.1.2.1 --- General Clinical Applications to Treat or Prevent Diseases --- p.32 / Chapter 2.1.2.2 --- As an Antioxidant and Free Radical Scavenger --- p.33 / Chapter 2.1.3 --- Hypothesis: Baicalein and Baicalin Induce Cancer Cell Death Via Glutathione Depletion --- p.35 / Chapter 2.2 --- Materials and Methods --- p.36 / Chapter 2.2.1 --- Chemicals --- p.36 / Chapter 2.2.2 --- Buffers and Solutions --- p.36 / Chapter 2.2.3 --- Animals --- p.37 / Chapter 2.2.4 --- Preparation of Rat Brain Microsomes --- p.37 / Chapter 2.2.5 --- Glutathione Depletion Assay In Vitro and Thiol Depletion Assay in Rat Brain Microsomes --- p.38 / Chapter 2.2.6 --- Statistical Analysis --- p.39 / Chapter 2.3 --- Results --- p.40 / Chapter 2.3.1 --- Effects of Baicalein and Baicalin on Sulfhydryl Contents of Glutathione --- p.42 / Chapter 2.3.2 --- Effects of Baicalein and Baicalin on Sulfhydryl Contents of Rat Brain Microsomes --- p.42 / Chapter 2.4 --- Discussion --- p.44 / Chapter Chapter 3 --- Effects of Baicalein and Baicalin on Proliferation of Different Human Cancer and Normal Cells --- p.45 / Chapter 3.1 --- Introduction-Importance of Developing A Novel Compound Inducing Cancer Cells to Cell Death with the Least Side Effects on Normal Cells --- p.45 / Chapter 3.2 --- Materials and Methods --- p.46 / Chapter 3.2.1 --- Instruments --- p.46 / Chapter 3.2.2 --- Chemicals and Cell Culture Reagents --- p.46 / Chapter 3.2.3 --- Buffers --- p.46 / Chapter 3.2.4 --- Cell Lines --- p.47 / Chapter 3.2.5 --- Cell Culture --- p.48 / Chapter 3.2.6 --- Determination of Cell Proliferation by MTT Assay --- p.49 / Chapter 3.3 --- Results --- p.51 / Chapter 3.3.1 --- Anti-Proliferative Effects of Baicalein and Baicalin on Different Cancer Cell Lines --- p.51 / Chapter 3.3.2 --- Effects of Baicalein on Different Normal Cell Lines --- p.56 / Chapter 3.4 --- Discussion --- p.58 / Chapter 3.4.1 --- Anti-Proliferative Effects of Baicalein and Baicalin on Different Cancer Cell Lines --- p.58 / Chapter 3.4.2 --- Effects of Baicalein on Cell Proliferation on Different Human Normal Cell Lines --- p.60 / Chapter Chapter 4 --- Glutathione-Depleting Effects of Baicalein on Cell Proliferation of Different Cell Lines --- p.61 / Chapter 4.1 --- Introduction-Brain Tumors --- p.61 / Chapter 4.1.1 --- Types and Classifications of Brain Tumors --- p.61 / Chapter 4.1.2 --- "Incidence Time, Patient Survival Time and Rate for" --- p.65 / Chapter 4.1.3 --- Symptoms and Diagnostic Methods for Brain Tumors --- p.66 / Chapter 4.1.4 --- "Treatments, Side Effects and Difficulties of Treatments for Brain Tumors" --- p.67 / Chapter 4.1.5 --- Glutathione Levels in Brain Normal and Cancer Cells --- p.69 / Chapter 4.2 --- Materials and Methods --- p.70 / Chapter 4.2.1 --- Instruments --- p.70 / Chapter 4.2.2 --- Chemicals --- p.70 / Chapter 4.2.3 --- Buffers --- p.70 / Chapter 4.2.4 --- Determination of Cell Proliferation by MTT Assay --- p.70 / Chapter 4.2.5 --- Determination of Intracellular Glutathione Depletion by Fluorescent Dye CMAC --- p.71 / Chapter 4.2.6 --- Determination of Cellular Reduced Glutathione Levels by DTNB-Coupled Glutathione Reductase Recycling Assay --- p.73 / Chapter 4.3 --- Results --- p.75 / Chapter 4.3.1 --- Effects of Baicalein on Intracellular GSH Levels and Cell Proliferation for Different Cell Lines --- p.75 / Chapter 4.3.2 --- Basal Intracellular Glutathione in Different Cell Lines --- p.81 / Chapter 4.4 --- Discussion --- p.84 / Chapter 4.4.1 --- Intracellular Glutathione Depletion and Cell Death Induction Effects of Baicalein on Different Cell Lines --- p.84 / Chapter 4.4.2 --- Relationship between Basal Glutathione Levels and Drug Susceptibilities --- p.85 / Chapter Chapter 5 --- Effects of Baicalein on Apoptosis and Caspase Pathways --- p.88 / Chapter 5.1 --- Introduction-Modes of Cell Death --- p.88 / Chapter 5.1.1 --- Necrosis --- p.88 / Chapter 5.1.2 --- Apoptosis --- p.89 / Chapter 5.2 --- Materials and Methods --- p.92 / Chapter 5.2.1 --- Chemicals --- p.92 / Chapter 5.2.2 --- Buffers --- p.92 / Chapter 5.2.3 --- Determination of Change of Mitochondrial Membrane Potential by JC-1 --- p.93 / Chapter 5.2.4 --- Determination of Apoptosis by Annexin V-Propidium Iodide Staining --- p.94 / Chapter 5.2.5 --- Determination of Cell Cycle Arrest by Propidium Iodide Staining --- p.95 / Chapter 5.2.6 --- "Determination of Caspase-3, -8 and -9 Activities by Fluorescent-Labeled Peptides" --- p.96 / Chapter 5.2.7 --- Determination of DNA Fragmentation --- p.97 / Chapter 5.2.8 --- Terminal Deoxynucleotidyl Transferase Mediated dUTP End Labeling (TUNEL) Assay --- p.99 / Chapter 5.2.9 --- Flow Cytometry --- p.101 / Chapter 5.3 --- Results --- p.102 / Chapter 5.3.1 --- Effects of Baicalein on Mitochondrial Membrane Potential by JC-1 Staining --- p.102 / Chapter 5.3.2 --- Effects of Baicalein on Apoptosis and Necrosis by Annexin V-Propidium Iodide Staining --- p.104 / Chapter 5.3.3 --- Effects of Baicalein on Cell Cycle Arrest by Propidium Iodide Staining --- p.108 / Chapter 5.3.4 --- "Effects of Baicalein on Caspase-3, -8 and -9 Activities" --- p.110 / Chapter 5.3.5 --- Effeets of Baiealein on DNA Fragmentation --- p.115 / Chapter 5.3.6 --- Effects of Baicalein on TUNEL Assay --- p.117 / Chapter 5.4 --- Discussion --- p.120 / Chapter Chapter 6 --- Pro-Oxidant Role of Baicalein on Reactive Oxygen Species Generation --- p.122 / Chapter 6.1 --- Introduction --- p.122 / Chapter 6.2 --- Materials and Methods --- p.122 / Chapter 6.2.1 --- Chemicals --- p.122 / Chapter 6.2.2 --- Determination of Cellular Reactive Oxygen Species Generation by Fluorescent Dye cDCFDA --- p.123 / Chapter 6.2.3 --- Determination of Mitochondrial Reactive Oxygen Species Generation by Fluorescent Dye Rhl23 --- p.124 / Chapter 6.3 --- Results --- p.125 / Chapter 6.3.1 --- Effects of Baicalein on Cellular ROS Generation by Fluorescent Dye cDCFDA --- p.125 / Chapter 6.3.2 --- Effects of Baicalein on Mitochondrial ROS Generation by Fluorescent Dye Rhl23 --- p.129 / Chapter 6.4 --- Discussion --- p.132 / Chapter Chapter 7 --- The Anticancer Mechanistic Study of Baicalein --- p.133 / Chapter 7.1 --- Introduction --- p.133 / Chapter 7.2 --- Materials and Methods --- p.134 / Chapter 7.2.1 --- Chemicals --- p.134 / Chapter 7.2.2 --- Reversibility of Baicalein-Induced GSH Depletion and Cell Death by Different Antioxidant Treatments --- p.134 / Chapter 7.2.3 --- Reversibility of Baicalein-Induced Cellular ROS Generation --- p.136 / Chapter 7.2.4 --- Reversibility of Baicalein-Induced Apoptosis by Co-Treatment of Different Antioxidants and Caspase Inhibitors --- p.137 / Chapter 7.2.5 --- "Reversibility of Baicalein-Induced Caspase-3, -8 and -9 Activation by Co-Treatment of Different Antioxidants" --- p.138 / Chapter 7.3 --- Results --- p.139 / Chapter 7.3.1 --- Reversibility of Baicalein-Induced GSH Depletion and Cell Death by Different Antioxidant Treatments --- p.139 / Chapter 7.3.1.1 --- Pre-treatments --- p.139 / Chapter 7.3.1.2 --- Co-treatments --- p.141 / Chapter 7.3.1.3 --- Post-treatments --- p.144 / Chapter 7.3.2 --- Reversibility of Baicalein-Induced Cellular ROS Generation by Co-Treatment of Different Antioxidants --- p.147 / Chapter 7.3.3 --- Reversibility of Baicalein-Induced Apoptosis by Co-Treatment of Different Antioxidants and Caspase Inhibitors --- p.152 / Chapter 7.3.4 --- Reversibility of Baicalein-Induced Caspase-3 Activation by Co-Treatment of Different Antioxidants --- p.156 / Chapter 7.3.5 --- Reversibility of Baicalein-Induced Caspase-8 and -9 Activation by Co-Treatment of Different Antioxidants --- p.160 / Chapter 7.4 --- Discussion --- p.164 / Chapter 7.4.1 --- Reversibility of Baicalein-Induced GSH Depletion and Cell Death --- p.164 / Chapter 7.4.2 --- "Reversibility of Baicalein-Induced ROS Generation," --- p.167 / Chapter 7.5 --- Concluding Remarks --- p.168 / Chapter Chapter 8 --- General Discussion --- p.169 / Chapter 8.1 --- Drug Delivery to Brain --- p.169 / Chapter 8.2 --- Protective Roles of Baicalein on Brain Cells --- p.170 / Chapter 8.2.1 --- Actions Against Oxidative Stress --- p.170 / Chapter 8.2.2 --- Actions Against Other Neurotoxic Damages --- p.171 / Chapter 8.2.3 --- Actions Against Neuronal Diseases --- p.172 / Chapter 8.3 --- Anticancer Roles of Baicalein on Astrocytoma --- p.173 / Chapter 8.4 --- Implications on the Dual Roles of Baicalein: Antioxidant and Pro-oxidant --- p.175 / Chapter 8.5 --- Future Perspectives --- p.175 / Chapter 8.5.1 --- Effects of Baicalein on Antioxidant System --- p.175 / Chapter 8.5.2 --- Effects of Baicalein on GSH Synthesis --- p.176 / Chapter 8.5.3 --- In Vivo Studies on Cytotoxic Effects of Baicalein --- p.177 / Chapter 8.5.4 --- In Vivo Studies on Anti-Tumor Effects and In Vitro Studies on Anti-Metastasis Effects of Baicalein --- p.178 / Reference List --- p.181

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325975
Date January 2007
ContributorsYeung, Tak Wai., Chinese University of Hong Kong Graduate School. Division of Biochemistry.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xxviii, 197 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0031 seconds