Return to search

GALS design methodology based on pausible clocking

Globally Asynchronous Locally Synchronous (GALS) Design ist eine Lösung zur Skalierbarkeit und Modularität für die SoC-Integration. Heutzutage ist GALS-Design weit in der Industrie angewendet. Die meisten GALS-Systeme basieren auf Dual-Clock-FIFOs für die Kommunikation Zwischen Taktdomänen. Um Leistungsverluste aufgrund der Synchronisationslatenzzeit zu vermindern, müssen die On-Chip-FIFOs ausreichend groß sein. Dies führt jedoch oft zu erheblichen Kosten-Hardware. Effiziente GALS- Lösungen sind daher vonnöten. Diese Arbeit berichtet unsere neuesten Fortschritte in GALS Design, das auf der Pausierenden Taktung basiert. Kritische Designthemen in Bezug auf Synchronisation-szuverlässigkeit bzw. Kommunikationsfähigkeit sind systematisch und analytisch un-tersucht. Ein lose gekoppeltes GALS Data-Link-Design wird vorgeschlagen. Es unter-stützt metastabilitätsfreie Synchronisation für Sub-Takt-Baum Verzögerungen. Außer-dem unterstützt es kontinuierliche Datenübertragung für High-Throughput-Kommuni-kation. Die Rosten hinsichtlich Energie verbrauch und Chipfläche sind marginal. GALS Design ist eingesetzt, um digitales On-Chip Umschaltrauschen zu verringern. Plesiochron Taktung mit balanciertem Leistungsverbrauch zwischen GALS Blöcken wird insbesondere untersucht. Für M Taktbereiche wird eine Reduzierung um 20lgM dB für die spektralen Spitzen des Versorgungsstroms bei der Takt-Grundfrequenz theoretisch hergcleitet. Im Vergleich zu den bestehenden synchronen Lösungen, geben diese Methode eine Alternative, um das digitale schaltrauschen effektiv zu senken. Schließlich wurde die entwickelte GALS Design Methodik schon bei reale Chip-Implementierungen angewendet. Zwei komplizierte industriell relevante Test-Chips, Lighthouse und Moonrake, wurden entworfen und mit State-Of-The-Art-Technologien hergestellt. Die experimentellen Ergebnisse bzw. / Globally asynchronous locally synchronous (GALS) design presents a solution of scalability and modularity to SoC integration. Today, it has been widely applied in the industry. Most of the GALS systems are based on dual-clock FIFOs for clock domain crossing. To avoid performance loss due to synchronization latency, the on-chip FIFOs need to be sufficiently large. This, however, often leads to considerable hardware costs. Efficient design solutions of GALS are therefore in great demand. This thesis reports our latest progress in GALS design bases on pausible clocking. Critical design issues on synchronization reliability and communication performance are studied systematically and analytically. A loosely-coupled GALS data-link design is proposed. It supports metastability-free synchronization for sub-cycle clock-tree delay, and accommodates continuous data transfer for high-throughput communication. Only marginal costs of power and silicon area are required. GALS design has been employed to cope with the on-chip digital switching noise in our work. Plesiochronous clocking with power-consumption balance between GALS blocks is in particular explored. Given M clock domains, a reduction of 20lgM dB on the spectral peaks of supply current at the fundamental clock frequency is theoretically derived. In comparison with the existing synchronous design solutions, it thus presents an alternative to effective attenuation of digital switching noise. The developed GALS design methodology has been applied to chip implementation. Two complicated industry-relevant test chips, named Lighthouse and Moonrake, were designed and fabricated using state-of-the-art technologies. The experimental results as well as the on-chip measurements are reported here in detail. We expect that, our work will contribute to the practical applications of GALS design based on pausible clocking in the industry.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17605
Date22 April 2014
CreatorsFan, Xin
ContributorsGrass, Eckhard, Steininger, Andreas, Vierhaus, Heinrich
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
RightsNamensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Page generated in 0.0253 seconds