Return to search

L'instrument Micro-ARES sur ExoMars 2016 / The Micro-ARES instrument on ExoMars 2016

Divers phénomènes d'ionisation et d'électrification atmosphériques existent dans la plupart des environnements planétaires connus et les conditions dans la basse atmosphère de Mars sont propices à l'établissement de champs électriques potentiellement très élevés. La raison d'être de Micro-ARES, le capteur de champ électrique et de conductivité de la suite météo DREAMS, seule charge utile scientifiques de l'atterrisseur Schiaparelli de la mission ExoMars 2016, était de défricher cette électricité atmosphérique martienne. L’étude de l’activité électrique ainsi que de la génération de ces champs électriques dans les tempêtes de poussières martiennes permettrait de faire la lumière sur divers phénomènes physiques : La dynamique des poussières à l’échelle locale et planétaire, élément clé du climat martien, la peu comprise ionosphère martienne ou encore la chimie atmosphérique et plus précisément l’énigme du méthane martien.La thèse présentée ici détaille le développement matériel et logiciel de Micro-ARES, les tests subits par l’instrument aussi bien en chambre que sur le terrain, ainsi que le traitement des données et la physique qui sous-tend le fonctionnement de l’instrument. Puisque de futures mission embarqueront très probablement ce type de capteur polyvalent, léger et consommant peu, l’accent a été mis sur la modélisation de l’interaction entre l’électrode et l’atmosphère. Ce travail théorique dépasse le cadre de Micro-ARES sur ExoMars 2016 et est une étape nécessaire dans la compréhension et le traitement des biais induits aussi bien par l’environnement de l’instrument, son design simplifié et les comportements inattendus de l’atmosphère martienne. / Atmosphere ionization and electrification mechanisms of various sorts are known to exist in most of the planetary environments. It appears that the lower atmosphere and surface of Mars combine a number of favorable conditions for the development of intense atmospheric electric fields. Unveiling the Martian atmospheric electricity was the original goal of Micro-ARES, the electric-field and conductivity sensor of the DREAMS meteorological suite, the only scientific payload that equipped the Schiaparelli module from the ExoMars 2016 mission.The study of the electrical activity and electric field generation in Martian dust events might bring new capital knowledge on a wide range of phenomena: The local and planetary scale dust dynamics, a major component of the Martian climate, the partially understood Martian ionosphere, atmospheric chemistry and more precisely the production and destruction of the Martian methane, a still unresolved mystery.The following thesis details the hardware and software development of Micro-ARES, its testing phases, both in laboratory and on the field, and the data processing and physical processes underlying the instrument’s operation. Since future missions may carry again these kind of polyvalent, lightweight and energy-efficient sensor, emphasis was put on the modeling of the instrument's electrical coupling with the atmosphere. This theoretical work exceeds the frame of Micro-ARES in ExoMars 2016 and is necessary in order to understand and accurately compensate the biases induced by the instrument's surroundings, its simplified design and the unexpected electrical behavior of the Martian atmosphere.

Identiferoai:union.ndltd.org:theses.fr/2017PA066061
Date12 May 2017
CreatorsDéprez, Grégoire
ContributorsParis 6, Montmessin, Franck, Witasse, Olivier
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0053 seconds