In der vorliegenden Arbeit wird die erstmalige Erzeugung eines<br />Bose-Einstein-Kondensates in einer Mikrochip-Falle beschrieben; dies ist eine Magnetfalle für Neutralatome, die mithilfe stromführender Leiterbahnen auf einem Chipsubstrat gebildet wird. Die Eigenschaften dieser Chipfallen, speziell die hohen<br />Magnetfeldgradienten und -krümmungen, haben es ermöglicht, die<br />Bose-Einstein-Kondensation in weniger als einer Sekunde Verdampfungskühlzeit zu erreichen, was rund eine Größenordnung schneller als in bisher verwendeten Magnetfallen ist<br />und ein Faktor drei schneller als auf dem bisher schnellsten Weg in einer optischen Dipolfalle. Damit verbunden sind die Ansprüche<br />an den experimentellen Aufbau, insbesondere das Vakuumsystem und<br />den Laseraufbau, deutlich gesunken.<br /><br />Weiterhin wird der zerstörungsfreie Transport des Bose-Einstein-Kondensats entlang der Chipoberfläche über makroskopische Distanzen demonstriert wie auch erstmalig die Aufspaltung eines Kondensates in zwei getrennte Kondensate mit rein magnetischen Mitteln.<br /><br />Diese Resultate, nämlich kohärente Materie in einem integrierten<br />atomoptischen System manipulieren zu können, lassen hoffen, daß in<br />naher Zukunft Anwendungen wie Atominterferometrie, Untersuchungen<br />zu niederdimensionalen Quantengasen und<br />Quanteninformationsverarbeitung 'on-chip' verwirklicht werden<br />können.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00005213 |
Date | 19 December 2002 |
Creators | Hommelhoff, Peter |
Source Sets | CCSD theses-EN-ligne, France |
Language | German |
Detected Language | German |
Type | PhD thesis |
Page generated in 0.0022 seconds