Return to search

The development of a radio frequency plasma within a graphite furnace

Graphite Furnace Atomic Absorption Spectroscopy (GFAA) and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) are two primary means of analyzing metals at the elemental level. Both techniques are widely accepted as tools for basic research. Each technique is performed differently and has its own distinct advantages as well as disadvantages. The choice of which technique to employ is determined by the needs of the analysis and the limitations of the instrumental technique.The idea to merge the two techniques was originallydeveloped by the research group of Dr. Michael W. Blades of the University of British Columbia, Vancouver, in 1989, who successfully demonstrated a "mini" plasma within a graphite furnace. The goal of the research was to design a device that would combine the advantages of both techniques and hopefully eliminate or minimize the unfavorable characteristics of each technique.The sustaining of a "mini" plasma has been demonstrated by this group. Although the end result was similar to that of Blades' group, the method of achieving the plasma was such that the "new" instrument could easily be mounted onto the furnace via a small Interface/Power Coupling device. The advantages of this system are: existing GFAA instruments can be used; modification of the furnace and RF supply is minimal; RF electronics can be remotely located; removal of the interface device is quickly achieved; and sample introduction, through the use of an autosampler, can be facilitated with small modification.Background spectra were acquired using helium, argon, and a mixture of argon/helium. It was found that all the plasmas have highly structured backgrounds and demonstrate the potential for many analysis regions. Two methods of sample introduction were used in acquiring the line emission of magnesium: injection through the sample inlet port to the furnace and end window injection. Inlet port injection suffers from a loss of sensitivity, when compared to end cap injection, but is more easily performed. / Department of Chemistry

Identiferoai:union.ndltd.org:BSU/oai:cardinalscholar.bsu.edu:handle/184355
Date January 1992
CreatorsBir, David J.
ContributorsBall State University. Dept. of Chemistry., Rybarcyzk, James P.
Source SetsBall State University
Detected LanguageEnglish
Formatvi, 95 leaves : ill. ; 28 cm.
SourceVirtual Press

Page generated in 0.0018 seconds