Return to search

Discovery Potential Of Quantum Black Holes In Add Model With The Cms Detector

With the long awaited start-up of the LHC, TeV scale physics is now in reach of the particles physicists to explore. There are many questions about the nature to be answered, and many more theories to be tested trying to answer them.


The ADD model of extra dimensions is one such model, written to address the large mass hi- erarchy between the two fundamental energy scales in nature, the electroweak and the Planck scales. ADD model predicts stronger gravity at sub-millimeter distance scales, which would then lead to an interesting physical object to be produced at proton collusions at the LHC: Tiny quantum black holes.


In this thesis we study the discovery potential of CMS for quantum black hole events for proton-proton collusions at sqrt(s) = 14 TeV. Our study details the trigger response of CMS, various criteria and methods for background rejection, affect of experimental uncertainties on measurements, for different model parameter values.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613539/index.pdf
Date01 September 2011
CreatorsGamsizkan, Halil
ContributorsSerin, Meltem
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.005 seconds