The magnetocaloric effect (MCE) is the temperature change in a magnetic material due to a change in an applied magnetic field. How the MCE behaves in different magnetic materials and at different phase transitions is fundamental to understand. The driver of the MCE is a change in entropy which has multiple contributions: magnetic, lattice, and electron. In this thesis the MCE is studied in a simple antiferromagnetic (AFM) model andin a realistic noncollinear spin glass Neodymium model using Monte Carlo and Atomistic Spin Dynamics simulations. For the simple AFM system, no clear results were achieved, indicating that MCE in AFM materials is not due to a change solely in the magnetic entropy. For the complex magnetic material Nd, a more clear result is seen, indicating that frustration in the system might be important to the MCE in noncollinear materials. Nd results also signify more phase transitions than previously reported.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-505925 |
Date | January 2023 |
Creators | Berge, Siri Alva |
Publisher | Uppsala universitet, Materialteori |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | FYSAST ; FYSMAS1203 |
Page generated in 0.002 seconds