A quartz multiatomizer with its inlet arm modified to serve as a trap (trap and atomizer device) was employed to trap the tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcetration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5 % was found. The detection limits reached were 29 and 143 pg ml-1 Sn, respectively, for 120 second preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples. Key words HG-AAS, multiatomizer (multiple microflame quartz tube atomizer), trap and atomizer device, tin determination, stannane, in atomizer trapping, interference study
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:323809 |
Date | January 2013 |
Creators | Průša, Libor |
Contributors | Hraníček, Jakub, Spěváčková, Věra |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds