This master's thesis deal with problems of classification objects on the basis of atributes get from images. This thesis pertain to a branch of computer vision. Describe possible instruments of classification (e.g. neural networks, decision tree, etc.). Essential part is description objects by means of atributes. They are imputs to classifier. Practical part of this thesis deal with classification of object collection, which can be usually found at home (e.g. scissors, compact disc, sticky, etc.). Analyzed image is preprocessed , segmented by thresholding in HSV color map. Then defects caused by a segmentation are reconstructed by morfological operations. After are determined atribute values, which are imputs to classifier. Classifier has form of decision tree.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:217783 |
Date | January 2009 |
Creators | Gabriel, Petr |
Contributors | Petyovský, Petr, Janáková, Ilona |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds