Return to search

Understanding the Phishing Ecosystem

In “phishing attacks”, phishing websites mimic trustworthy websites in order to steal sensitive information from end-users. Despite research by both academia and the industry focusing on development of anti-phishing detection techniques, phishing has increasingly become an online threat. Our inability to slow down phishing attacks shows that we need to go beyond detection and focus more on understanding the phishing ecosystem. In this thesis, we contribute in three ways to understand the phishing ecosystem and to offer insight for future anti-phishing efforts. First, we provide a new and comparative study on the life cycle of phishing and malware attacks. Specifically, we use public click-through statistics of the Bitly URL shortening service to analyze the click-through rate and timespan of phishing and malware attacks before (and after) they were reported. We find that the efforts against phishing attacks are stronger than those against malware attacks.We also find phishing activity indicating that mitigation strategies are not taking down phishing websites fast enough. Second, we develop a method that finds similarities between the DOMs of phishing attacks, since it is known that phishing attacks are variations of previous attacks. We find that existing methods do not capture the structure of the DOM, and question whether they are failing to catch some of the similar attacks. We accordingly evaluate the feasibility of applying Pawlik and Augsten’s recent implementation of Tree Edit Distance (AP-TED)calculations as a way to compare DOMs and identify similar phishing attack instances.Our method agrees with existing ones that 94% of our phishing database are replicas. It also better discriminates the similarities, but at a higher computational cost. The high agreement between methods strengthens the understanding that most phishing attacks are variations, which affects future anti-phishing strategies.Third, we develop a domain classifier exploiting the history and internet presence of a domain with machine learning techniques. It uses only publicly available information to determine whether a known phishing website is hosted on a legitimate but compromised domain, in which case the domain owner is also a victim, or whether the domain itself is maliciously registered. This is especially relevant due to the recent adoption of the General Data Protection Regulation (GDPR), which prevents certain registration information to be made publicly available. Our classifier achieves 94% accuracy on future malicious domains,while maintaining 88% and 92% accuracy on malicious and compromised datasets respectively from two other sources. Accurate domain classification offers insight with regard to different take-down strategies, and with regard to registrars’ prevention of fraudulent registrations.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/39385
Date08 July 2019
CreatorsLe Page, Sophie
ContributorsJourdan, Guy-Vincent
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0023 seconds