Return to search

Best-first Decision Tree Learning

In best-first top-down induction of decision trees, the best split is added in each step (e.g. the split that maximally reduces the Gini index). This is in contrast to the standard depth-first traversal of a tree. The resulting tree will be the same, just how it is built is different. The objective of this project is to investigate whether it is possible to determine an appropriate tree size on practical datasets by combining best-first decision tree growth with cross-validation-based selection of the number of expansions that are performed. Pre-pruning, post-pruning, CART-pruning can be performed this way to compare.

Identiferoai:union.ndltd.org:ADTP/238184
Date January 2007
CreatorsShi, Haijian
PublisherThe University of Waikato
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.waikato.ac.nz/library/research_commons/rc_about.shtml#copyright

Page generated in 0.0021 seconds