Les réseaux complexes constituent un outil pratique pour modéliser les systèmes complexes réels. Pour cette raison, ils sont devenus très populaires au cours de la dernière décennie. De nombreux outils existent pour étudier les réseaux complexes. Parmi ceux-ci, la détection de la communauté est l’un des plus importants. Une communauté est grossièrement définie comme un groupe de nœuds plus densément connectés entre eux qu’avec le reste du réseau. Dans la littérature, cette définition intuitive a été formalisée de plusieurs différentes façons, ce qui a conduit à d’innombrables méthodes et variantes permettant de les détecter. Du point de vue applicatif, le sens des communautés est aussi important que leur détection. Cependant, bien que la tâche de détection de communautés en elle-même ait attiré énormément d’attention, le problème de leur interprétation n’a pas été sérieusement abordé jusqu’à présent. Dans cette thèse, nous voyons l’interprétation des communautés comme un problème indépendant du processus de leur détection, consistant à identifier les éléments leurs caractéristiques les plus typiques. Nous le décomposons en deux sous-problèmes : 1) trouver un moyen approprié pour représenter une communauté ; et 2) sélectionner de façon objective les parties les plus caractéristiques de cette représentation. Pour résoudre ces deux sous-problèmes, nous exploitons l’information encodée dans les réseaux dynamiques attribués. Nous proposons une nouvelle représentation des communautés sous la forme de séquences temporelles de descripteurs associés à chaque nœud individuellement. Ces descripteurs peuvent être des mesures topologiques et des attributs nodaux. Nous détectons ensuite les motifs séquentiels émergents dans cet ensemble de données, afin d’identifier les ceux qui sont les plus caractéristiques de la communauté. Nous effectuons une validation de notre procédé sur des réseaux attribués dynamiques générés artificiellement. A cette occasion, nous étudions son comportement relativement à des changements structurels de la structure de communautés, à des modifications des valeurs des attributs. Nous appliquons également notre procédé à deux systèmes du monde réel : un réseau de collaborations scientifiques issu de DBLP, et un réseau d’interactions sociales et musicales tiré du service LastFM. Nos résultats montrent que les communautés détectées ne sont pas complètement homogènes. Certaines communautés sont composées de petits groupes de nœuds qui ont tendance à évoluer ensemble au cours du temps, que ce soit en termes de propriétés individuelles ou collectives. Les anomalies détectées correspondent généralement à des profils typiques : nœuds mal placés par l’outil de détection de communautés, ou nœuds différant des tendances de leur communautés sur certains points, et/ou non-synchrones avec l’évolution de leur communauté, ou encore nœuds complètement différents. / Complex Networks constitute a convenient tool to model real-world complex systems. For this reason, they have become very popular in the last decade. Many tools exist to study complex networks. Among them, community detection is one of the most important. A community is roughly defined as a group of nodes more connected internally than to the rest of the network. In the literature, this intuitive definition has been formalized in many ways, leading to countless different methods and variants to detect communities. In the large majority of cases, the result of these methods is set of node groups in which each node group corresponds to a community. From the applicative point of view, the meaning of these groups is as important as their detection. However, although the task of detecting communities in itself took a lot of attraction, the problem of interpreting them has not been properly tackled until now. In this thesis, we see the interpretation of communities as a problem independent from the community detection process, consisting in identifying the most characteristic features of communities. We break it down into two sub-problems: 1) finding an appropriate way to represent a community and 2) objectively selecting the most characteristic parts of this representation. To solve them, we take advantage of the information encoded in dynamic attributed networks. We propose a new representation of communities under the form of temporal sequences of topological measures and attribute values associated to individual nodes. We then look for emergent sequential patterns in this dataset, in order to identify the most characteristic community features. We perform a validation of our framework on artificially generated dynamic attributed networks. At this occasion, we study its behavior relatively to changes in the temporal evolution of the communities, and to the distribution and evolution of nodal features. We also apply our framework to real-world systems: a DBLP network of scientific collaborations, and a LastFM network of social and musical interactions. Our results show that the detected communities are not completely homogeneous, in the sense several node topic or interests can be identified for a given community. Some communities are composed of smaller groups of nodes which tend to evolve together as time goes by, be it in terms of individual (attributes, topological measures) or relational (community migration) features. The detected anomalies generally fit some generic profiles: nodes misplaced by the community detection tool, nodes relatively similar to their communities, but also significantly different on certain features and/or not synchronized with their community evolution, and finally nodes with completely different interests.
Identifer | oai:union.ndltd.org:theses.fr/2014ISAL0072 |
Date | 16 July 2014 |
Creators | Orman, Keziban |
Contributors | Lyon, INSA, Boulicaut, Jean-François, Labatut, Vincent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds