O emprego de veículos autônomos é uma prática comumente adotada para a melhoria da produtividade no setor agrícola. No entanto, o custo computacional é um fator limitante na implementação desses dispositivos autônomos. A alternativa apresentada neste trabalho consistiu no desenvolvimento de um dispositivo de hardware dedicado para a navegação de robôs móveis agrícolas, o qual indica áreas navegáveis e não navegáveis, além do ângulo de inclinação do veículo em relação à linha de plantio. O desenvolvimento do projeto foi baseado em um método de extração de características visuais locais por meio do processamento de imagens coloridas obtidas por uma câmera de vídeo. O circuito foi implementado por meio de uma ferramenta de desenvolvimento baseado em um FPGA de baixo custo. O circuito consiste nas etapas de classificação, processamento morfológico e extração das linhas de navegação. Na primeira etapa, os pixels são classificados a partir do modelo de cores HSL em classes que representam as áreas passíveis e não passíveis de navegação. Posteriormente, a etapa de processamento morfológico realiza as tarefas de filtragem, agrupamento e extração de bordas. O processamento morfológico é realizado por meio de um arranjo de unidades de processamento dedicadas. Cada unidade pode realizar uma operação básica de morfologia matemática. O elemento estruturante utilizado na operação, bem como a operação realizada pela unidade, é configurado por meio de parâmetros do projeto. O processo de extração das linhas de orientação é realizado por meio do método de regressão linear por mínimos quadrados. A arquitetura proposta no projeto permitiu o processamento em tempo real de imagens para a aplicação de navegação autônoma de robôs móveis em ambientes agrícolas. / The use of autonomous vehicles is a generally adopted practice to improve the productivity in the agriculture sector. However, the computer requirements are a limiting factor for implementation of these autonomous devices. The alternative shown in this paper is the design of a dedicated hardware for the autonomous agricultural robot navigation. The project development was based on a local visual feature extraction method by processing digital images obtained from a color video camera. The circuit was implemented through a development tool based on a low cost FPGA. The circuit consists of stages of classification, morphological processing and guidance line extraction. In the first stage, the pixels are classified through HSL color model into classes that represent suitable and unsuitable area for navigation. Then, the morphological processing stage performs filtering, grouping and edge detection tasks. The morphological processing is carried out by an arrangement of dedicated processing units. Each unit can perform a basic operation of mathematical morphology. The structuring element used in the operation and the operation performed by the unit are configured through project parameters. The guidance line extraction process is performed through the linear regression method by least square. The architecture proposed in the design allowed the real-time image processing in autonomous robot navigation applications in agricultural environments.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-08122016-135216 |
Date | 05 August 2016 |
Creators | Senni, Alexandre Padilha |
Contributors | Tronco, Mario Luiz |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.002 seconds