Return to search

LAMINAR AND TURBULENT STUDY OF COMBUSTION IN STRATIFIED ENVIRONMENTS USING LASER BASED MEASUREMENTS

Practical gas turbine engine combustors create extremely non-uniform flowfields, which are highly stratified making it imperative that similar environments are well understood. Laser diagnostics were utilized in a variety of stratified environments, which led to temperature or chemical composition gradients, to better understand autoignition, extinction, and flame stability behavior. This work ranged from laminar and steady flames to turbulent flame studies in which time resolved measurements were used.
Edge flames, formed in the presence of species stratification, were studied by first developing a simple measurement technique which is capable of estimating an important quantity for edge flames, the advective heat flux, using only velocity measurements. Both hydroxyl planar laser induced fluorescence (OH PLIF) and particle image velocimetry (PIV) were used along with numerical simulations in the development of this technique. Interacting triple flames were also created in a laboratory scale burner producing a laminar and steady flowfield with symmetric equivalence ratio gradients. Studies were conducted in order to characterize and model the propagation speed as a function of the flame base curvature and separation distance between the neighboring flames. OH PLIF, PIV and Rayleigh scattering measurements were used in order to characterize the propagation speed. A model was developed which is capable of accurately representing the propagation speed for three different fuels. Negative edge flames were first studied by developing a one-dimensional model capable of reproducing the energy equation along the stoichiometric line, which was dependent on different boundary conditions. Unsteady and laminar negative edge flames were also simulated with periodic boundary conditions in order to assess the difference between the steady and unsteady cases. The diffusive heat loss was unbalanced with the chemical heat release and advective heat flux energy gain terms which led to the flame proceeding and receding. The temporal derivative balanced the energy equation, but also aided in the understanding of negative edge flame speeds. Turbulent negative edge flame velocities were measured for extinguishing flames in a separate experiment as a function of the bulk advective heat flux through the edge and turbulence level. A burner was designed and built for this study which created statistically stationary negative edge flames. The edge velocity was dependent on both the bulk advective heat flux and turbulence levels. The negative edge flame velocities were obtained with high speed stereo-view chemiluminescence and two dimensional PIV measurements.
Autoignition stabilization was studied in the presence of both temperature and species stratification, using a simple laminar flowfield. OH and CH2O PLIF measurements showed autoignition characteristics ahead of the flame base. Numerical chemical and flow simulations also revealed lower temperature chemistry characteristics ahead of the flame base leading to the conclusion of lower temperature chemistry dominating the stabilization behavior. An energy budget analysis was conducted which described the stabilization behavior.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:me_etds-1124
Date01 January 2018
CreatorsGrib, Stephen William
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Mechanical Engineering

Page generated in 0.002 seconds