Objectives: Research suggests the general public has a lack of faith in highly automated vehicles (HAV) stems from a lack of system transparency while in motion (e.g., the user not being informed on roadway perception or anticipated responses of the car in certain situations). This problem is particularly prevalent in public transit or ridesharing applications, where HAVs are expected to debut, and when the user has minimal training on, and control over, the vehicle. To improve user trust and their perception of comfort and safety, this study aimed to develop more detailed and tailored human-machine interfaces (HMI) aimed at relying automated vehicle intended actions (i.e., "intentions") and perceptions of the driving environment to the user.
Methods: This project developed HMI systems, with a focus on visual and auditory displays, and implemented them into a HAV developed at the Virginia Tech Transportation Institute (VTTI). Volunteer participants were invited to the Smart Roads at VTTI to experience these systems in real-world driving scenarios, especially ones typically found in rideshare or public transit operations. Participant responses and opinions about the HMIs and their perceived levels of comfort, safety, trust, and situational awareness were captured via paper-based surveys administered during experimentation.
Results: There was a considerable link found between HMI modality and users' reported levels of comfort, safety, trust, and situational awareness during experimentation. In addition, there were several key behavioral factors that made users more or less likely to feel comfortable in the HAV.
Conclusions: Moving forward, it will be necessary for HAVs to provide ample feedback to users in an effort to increase system transparency and understanding. Feedback should consistently and accurately represent the driving landscape and clearly communicate vehicle states to users. / Master of Science / One of the greatest barriers to the entry of highly automated vehicles (HAV) into the market is the lack of user trust in the vehicle. Research has shown that this lack of faith in the system primarily stems from a lack of system transparency while in motion (e.g., the user not being told how the car will react in a certain situation) and not having an effective way to control the vehicle in the event of a system failure. This problem is particularly prevalent in public transit or ridesharing applications, where HAVs are expected to first appear and where the user has less training and control over the vehicle. To improve user trust and perceptions of comfort and safety, this study developed human-machine interface (HMI) systems, focusing on visual and auditory displays, to better relay automated vehicle "intentions" and the perceived driving environment to the user. These HMI systems were then implemented into a HAV developed at the Virginia Tech Transportation Institute (VTTI) and tested with volunteer participants on the Smart Roads.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/95219 |
Date | 30 October 2019 |
Creators | Basantis, Alexis Rae |
Contributors | Department of Biomedical Engineering and Mechanics, Doerzaph, Zachary R., Klauer, Charlie, Neurauter, Michael L., Perez, Miguel A. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0499 seconds