Return to search

Human-Robot Interaction Using Reinforcement Learning and Convolutional Neural Network

Proper interaction is a crucial aspect of team collaborations for successfully achieving a common goal. In recent times, more technically advanced robots have been introduced into the industrial environments sharing the same workspace as other robots and humans which causes the need for human-robot interaction (HRI) to be greater than ever before. The purpose of this study is to enable a HRI by teaching a robot to classify different human facial expressions as either positive or negative using a convolutional neural network and respond to each of them with the help of the reinforcement learning algorithm Q-learning.The simulation showed that the robot could accurately classify and react to the facial expressions under the instructions given by the Q-learning algorithm. The simulated results proved to be consistent in every conducted experiment having low variances. These results are promising for future research to allow for the study to be conducted in real-life environments.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-50918
Date January 2020
CreatorsKhan, Yousuf, Otalvaro, Edier
PublisherMälardalens högskola, Akademin för innovation, design och teknik, Mälardalens högskola, Akademin för innovation, design och teknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds