Modeling of flow in porous and fractured media is a very important problem in reservoir engineering. As for numerical simulations conventional Navier-Stokes codes are applied to flow in both porous and fractured media. But they have long computation times, poor convergence and problems of numerical instabilities. Therefore, it is desired to develop another computational method that is more efficient and use simple rules to represent the flow in fractured media rather than partial differential equations. In this thesis Lattice Boltzmann Automaton Model will be used to represent the single phase fluid flow in two dimensional synthetic fractures and the simulation results obtained from this model are used to train Artificial Neural Networks. It has been found that as the mean aperture-fractal dimension ratio increases permeability increases. Moreover as the anisotropy factor increases permeability decreases with a second order polynomial relationship.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12605838/index.pdf |
Date | 01 January 2005 |
Creators | Eker, Erdinc |
Contributors | Akin, Serhat |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for METU campus |
Page generated in 0.0019 seconds