This thesis presents a framework for a mobile robot to escort a human to their destination successfully and efficiently. The proposed technique uses accurate path prediction incorporating human intention to locate the robot in front of the human while walking. Human intention is inferred by the head pose, an effective past-proven implicit indicator of intention, and fused with conventional physics-based motion prediction. The human trajectory is estimated and predicted using a particle filter because of the human's nonlinear and non-Gaussian behavior, and the robot control action is determined from the predicted human pose allowing for anticipative autonomous escorting. Experimental analysis shows that the incorporation of the proposed human intention model reduces human position prediction error by approximately 35% when turning. Furthermore, experimental validation with an omnidirectional mobile robotic platform shows escorting up to 50% more accurate compared to the conventional techniques, while achieving 97% success rate. / Master of Science / This thesis presents a method for a mobile robot to escort a human to their destination successfully and efficiently. The proposed technique uses human intention to predict the walk path allowing the robot to be in front of the human while walking. Human intention is inferred by the head direction, an effective past-proven indicator of intention, and is combined with conventional motion prediction. The robot motion is then determined from the predicted human position allowing for anticipative autonomous escorting. Experimental analysis shows that the incorporation of the proposed human intention reduces human position prediction error by approximately 35% when turning. Furthermore, experimental validation with an mobile robotic platform shows escorting up to 50% more accurate compared to the conventional techniques, while achieving 97% success rate. The unique escorting interaction method proposed has applications such as touch-less shopping cart robots, exercise companions, collaborative rescue robots, and sanitary transportation for hospitals.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/102581 |
Date | 02 March 2021 |
Creators | Conte, Dean Edward |
Contributors | Mechanical Engineering, Furukawa, Tomonari, Akbari Hamed, Kaveh, Asbeck, Alan T. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0023 seconds