Veículo autônomo inteligente (ou apenas veículo autônomo VA) é um tipo de sistema embarcado que integra componentes físicos (hardware) e computacionais (software). Sua principal característica é a capacidade de locomoção e de operação de modo semi ou completamente autônomo. A autonomia cresce com a capacidade de percepção e de deslocamento no ambiente, robustez e capacidade de resolver e executar tarefas lidando com as mais diversas situações (inteligência). Veículos autônomos representam um tópico de pesquisa importante e que tem impacto direto na sociedade. No entanto, à medida que esse campo avança alguns problemas secundários aparecem como, por exemplo, como saber se esses sistemas foram suficientemente testados. Uma das fases do teste de um VA é o teste de campo, em que o veículo é levado para um ambiente pouco controlado e deve executar livremente a missão para a qual foi programado. Ele é geralmente utilizado para garantir que os veículos autônomos mostrem o comportamento desejado, mas nenhuma informação sobre a estrutura do código é utilizada. Pode ocorrer que o veículo (hardware e software) passou no teste de campo, mas trechos importantes do código nunca tenham sido executados. Durante o teste de campo, os dados de entrada são coletados em logs que podem ser posteriormente analisados para avaliar os resultados do teste e para realizar outros tipos de teste offline. Esta tese apresenta um conjunto de propostas para apoiar a análise do teste de campo do ponto de vista do teste estrutural. A abordagem é composta por um modelo de classes no contexto do teste de campo, uma ferramenta que implementa esse modelo e um algoritmo genético para geração de dados de teste. Apresenta também heurísticas para reduzir o conjunto de dados contidos em um log sem diminuir substancialmente a cobertura obtida e estratégias de combinação e mutação que são usadas no algoritmo. Estudos de caso foram conduzidos para avaliar as heurísticas e estratégias e são também apresentados e discutidos. / Intelligent autonomous vehicle (or just autonomous vehicle - AV) is a type of embedded system that integrates physical (hardware) and computational (software) components. Its main feature is the ability to move and operate partially or fully autonomously. Autonomy grows with the ability to perceive and move within the environment, robustness and ability to solve and perform tasks dealing with different situations (intelligence). Autonomous vehicles represent an important research topic that has a direct impact on society. However, as this field progresses some secondary problems arise, such as how to know if these systems have been sufficiently tested. One of the testing phases of an AV is the field testing, where the vehicle is taken to a controlled environment and it should execute the mission for which it was programed freely. It is generally used to ensure that autonomous vehicles show the intended behavior, but it usually does not take into consideration the code structure. The vehicle (hardware and software) could pass the field testing, but important parts of the code may never have been executed. During the field testing, the input data are collected in logs that can be further analyzed to evaluate the test results and to perform other types of offline tests. This thesis presents a set of proposals to support the analysis of field testing from the point of view of the structural testing. The approach is composed of a class model in the context of the field testing, a tool that implements this model and a genetic algorithm to generate test data. It also shows heuristics to reduce the data set contained in a log without reducing substantially the coverage obtained and combination and mutation strategies that are used in the algorithm. Case studies have been conducted to evaluate the heuristics and strategies, and are also presented and discussed.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-15092015-090805 |
Date | 15 May 2015 |
Creators | Vânia de Oliveira Neves |
Contributors | Paulo Cesar Masiero, Márcio Eduardo Delamaro, Mariza Andrade da Silva Bigonha, Marcos Lordello Chaim, Thelma Elita Colanzi, Denis Fernando Wolf |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds