As more devices with different service requirements become connected to networked systems, such as Internet of Things (IoT) devices, maintaining quality of service becomes increasingly difficult. Large data sets can be obtained ahead of time in networks to train prediction models offline, however, resulting in high computational costs. Online learning is an alternative approach where a smaller cache of fixed size is maintained for training using sample selection algorithms, allowing for lower computational costs and real-time model re-computation. This project has resulted in two newly designed sample selection algorithms, Binned Relevance and Redundancy Sample Selection (BRR-SS) and Autoregressive First, In First Out-buffer (AR-FIFO). The algorithms are evaluated on data traces retrieved from a Key Value store and a Video on Demand service. Prediction accuracy of the resulting model while using the sample selection algorithms and the time to process a received sample is evaluated and compared to the pre-existing Reservoir Sampling (RS) and Relevance and Redundancy Sample Selection (RR-SS) with and without model re-computation. The results show that, while RS maintains the lowest computational overhead, BRR-SS outperforms both RS and RR-SS in prediction accuracy on the investigated traces. AR-FIFO, with its low computational cost, outperforms offline learning for larger cache sizes on the Key Value data set but shows inconsistencies on the Video on Demand trace. Model re-computation results in reduced error rates and significantly lowered variance on the investigated data traces, where periodic model re-computation overall outperforms change detection in practicality, prediction accuracy, and computational overhead. / Allteftersom fler enheter med olika servicekrav ansluts till nätverkssystem, såsom Internet of Things (IoT) enheter, ökar svårigheten att erhålla nödvändig servicekvalitet. Nätverk kan ge upphov till stora datamängder för träning av prediktionsmodeller offline, dock till en hög beräkningskostnad. Ett alternativt tillvägagångssätt är onlineinlärning där en mindre cache av fast storlek upprätthålls för träning med hjälp av datapunkturvalsalgoritmer. Detta möjliggör lägre beräkningskostnader samt realtidsmodellomräkningar. Detta projekt har resulterat i två nydesignade datapunkturvalsalgoritmer, Binned Relevance and Redundancy Sample Selection (BRR-SS) och Autoregressive First In, First Out-buffer (AR-FIFO). Algoritmerna utvärderas på dataspår som hämtats från ett Key Value-lager och en Video on Demand-tjänst. Förutsägelseförmåga för den resulterande modellen när datapunkturvalsalgoritmerna används och tid för bearbetning av mottagen datapunkt utvärderas och jämförs med dem redan existerande Reservoir Sampling (RS) och Relevance and Redundancy Sample Selection (RR-SS), med och utan modellomräkning. RS resulterar i lägst beräkningskostnad medan BRR-SS överträffar både RS och RR-SS i förutsägelseförmåga på dem undersökta spåren. AR-FIFO, med sin låga beräkningskostnad, överträffar offlineinlärning för större cachestorlekar på Key Value-spåret, men visar inkonsekvent beteende på Video on Demand-spåret. Modellomräkning resulterar i mindre fel och avsevärt sänkt varians på dem undersökta spåren, där periodisk modellomräkning totalt sett överträffar förändringsdetektering i praktikalitet, förutsägelseförmåga och beräkningskostnad. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-323708 |
Date | January 2022 |
Creators | Sjösvärd, Philip, Miksits, Samuel |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:164 |
Page generated in 0.0024 seconds