Return to search

Energy Preserving Methods For Korteweg De Vries Type Equations

Two well-known types of water waves are shallow water waves and the solitary waves. The former waves are those waves which have larger wavelength than the local water depth and the latter waves are used for the ones which retain their shape and speed after colliding with each other. The most well known of the latter waves are Korteweg de Vries (KdV) equations, which are widely used in many branches of physics and engineering. These equations are nonlinear long waves and mathematically represented by partial differential equations (PDEs). For solving the KdV and KdV-type equations, several numerical methods were developed in the recent years which preserve their geometric structure, i.e. the Hamiltonian form, symplecticity and the integrals. All these methods are classified as symplectic and multisymplectic integrators. They produce stable solutions in long term integration, but they do not preserve the Hamiltonian and the symplectic structure at the same time. This thesis concerns the application of energy preserving average vector field integrator(AVF) to nonlinear Hamiltonian partial differential equations (PDEs) in canonical and non-canonical forms. Among the PDEs, Korteweg de Vries (KdV) equation, modified KdV equation, the Ito&rsquo / s system and the KdV-KdV systems are discetrized in space by preserving the skew-symmetry of the Hamiltonian structure. The resulting ordinary differential equations (ODEs) are solved with the AVF method. Numerical examples confirm that the energy is preserved in long term integration and the other integrals are well preserved too. Soliton and traveling wave solutions for the KdV type equations are accurate as those solved by other methods. The preservation of the dispersive properties of the AVF method is also shown for each PDE.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12614216/index.pdf
Date01 July 2011
CreatorsSimsek, Gorkem
ContributorsKarasozen, Bulent
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0023 seconds