This study focuses on the soil- and water-borne plant pathogen Phytophthora cinnamomi Rands and the phenomenon of P. cinnamomi suppressive soil. In particular, this thesis reports on the outcome of field surveys and glasshouse assays undertaken to locate P. cinnamomi suppressive soils and to confirm the involvement of biological processes in suppression. The potential role of cellulase and laminarinase in suppression was investigated and a molecular technique known as length heterogeneity PCR (LH-PCR) was used to analyse the structure and diversity of bacterial and fungal communities in avocado orchard soils that were suppressive and conducive to P. cinnamomi. Four avocado orchards with P. cinnamomi suppressive soils were identified and soils were ã-irradiated to destroy their suppressive capacity, thus confirming biological suppression. Suppression was also partially transferred to ã-irradiated and conducive soils by mixing with 10% suppressive avocado soils. Cellulase and laminarinase activities measured in avocado orchard soils inoculated with P. cinnamomi were not associated with disease severity in lupin seedlings during glasshouse assays involving the same soil samples. Minor shifts in bacterial and fungal community structure were observed in response to mixing conducive and irradiated soils with suppressive soils. This was associated with decreased disease severity in avocado seedlings in these treatments. The shift in bacterial community structure was partially determined by the appearance and increased abundance of several bacterial 16S rDNA sequences, which were unique to the suppressive soils, in the mixed soil treatments. It is suggested that the bacteria and fungi from which these sequences originated may be involved in suppression and further work should be undertaken to determine their identity and confirm their potential role in the development and maintenance of P. cinnamomi suppressive soils. / Doctor of Philosophy (PhD)
Identifer | oai:union.ndltd.org:ADTP/212751 |
Date | January 2006 |
Creators | Keen, Bradley Paul, University of Western Sydney, College of Health and Science, School of Natural Sciences |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Page generated in 0.0018 seconds