Return to search

Avoiding edge colorings of hypercubes

The hypercube Qn is the graph whose vertices are the ordered n-tuples of zeros and ones, where two vertices are adjacent iff they differ in exactly one coordinate. A partial edge coloring f of a graph G is a mapping from a subset of edges of G to a set of colors; it is called proper if no pair of adjacent edges share the same color. A (possibly partial and unproper) coloring f is avoidable if there exists a proper coloring g such that no edge has the same color under f and g. An unavoidable coloring h is called minimal if it would be avoidable by letting any colored edge turn noncolored. We construct a computer program to find all minimal unavoidable edge colorings of Q3 using up to 3 colors, and draw some conclusions for general Qn.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-160863
Date January 2019
CreatorsJohansson, Per
PublisherLinköpings universitet, Matematik och tillämpad matematik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds