Return to search

Computing Boundaries for Reasoning in Sub-Ontologies

Consider an ontology T where every axiom is labeled with an element of a lattice (L, ≤). Then every element l of L determines a sub-ontology Tl, which consists of the axioms of T whose labels are greater or equal to l. These labels may be interpreted as required access rights, in which case Tl is the sub-ontology that a user with access right l is allowed to see, or as trust levels, in which case Tl consists of those axioms that we trust with level at least l. Given a consequence α (such as a subsumption relationship between concepts) that follows from the whole ontology T, we want to know from which of the sub-ontologies Tl determined by lattice elements l the consequence α still follows. However, instead of reasoning with Tl in the deployment phase of the ontology, we want to pre-compute this information during the development phase. More precisely, we want to compute what we call a boundary for α, i.e., an element μα of L such that α follows from T l iff l ≤ μα. In this paper we show that, under certain restrictions on the elements l used to define the sub-ontologies, such a boundary always exists, and we describe black-box approaches for computing it that are generalizations of approaches for axiom pinpointing in description logics. We also present first experimental results that compare the efficiency of these approaches on real-world ontologies.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:79512
Date16 June 2022
CreatorsBaader, Franz, Knechtel, Martin, Peñaloza, Rafael
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:report, info:eu-repo/semantics/report, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:14-qucosa2-785040, qucosa:78504

Page generated in 0.0226 seconds