Return to search

Parallelized microfluidic devices for high-throughput nerve regeneration studies in Caenorhabditis elegans

The nexus of engineering and molecular biology has given birth to high-throughput technologies that allow biologists and medical scientists to produce previously unattainable amounts of data to better understand the molecular basis of many biological phenomena. Here, we describe the development of an enabling biotechnology, commonly known as microfluidics in the fabrication of high-throughput systems to study nerve degeneration and regeneration in the well-defined model nematode, Caenorhabditis elegans (C. elegans). Our lab previously demonstrated how femtosecond (fs) laser pulses could precisely cut nerve axons in C. elegans, and we observed axonal regeneration in vivo in single worms that were immobilized on anesthetic treated agar pads. We then developed a microfluidic device capable of immobilizing one worm at a time with a deformable membrane to perform these experiments without agar pads or anesthetics. Here, we describe the development of improved microfluidic devices that can trap and immobilize up to 24 individual worms in parallel chambers for high-throughput axotomy and subsequent imaging of nerve regeneration in a single platform. We tested different micro-channel designs and geometries to optimize specific parameters: (1) the initial trapping of a single worm in each immobilization chamber, simultaneously, (2) immobilization of single worms for imaging and fs-laser axotomy, and (3) long term storage of worms on-chip for imaging of regeneration at different time points after the initial axon cut. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/27622
Date20 November 2014
CreatorsGhorashian, Navid
Source SetsUniversity of Texas
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0017 seconds