An efficient numerical method for solving Schrö / dinger' / s and Poisson' / s equations using a basis set of cubic B-splines is investigated. The method is applied to find both the wave functions and the corresponding eigenenergies of low-dimensional semiconductor structures. The computational efficiency of the method is explicitly shown by the multiresolution analysis, non-uniform grid construction and imposed boundary conditions by applying it to well-known single electron potentials. The method compares well with the results of analytical solutions and of the finite difference method.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12605473/index.pdf |
Date | 01 September 2004 |
Creators | Dikmen, Bora |
Contributors | Tomak, Mehmet |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0017 seconds