Ce travail est motivé par la spectroscopie de photoélectrons et l'étude de la cinématique des galaxies où les données correspondent respectivement à une séquence temporelle de spectres et à une image multispectrale. L'objectif est d'estimer les caractéristiques (amplitude, position spectrale et paramètre de forme) des raies présentes dans les spectres, ainsi que leur évolution au sein des données. Dans les applications considérées, cette évolution est lente puisque deux spectres voisins sont souvent très similaires : c'est une connaissance a priori qui sera prise en compte dans les méthodes développées. Ce problème inverse est abordé sous l'angle de la séparation de sources retardées, où les spectres et les raies sont attribués respectivement aux mélanges et aux sources. Les méthodes de l'état de l'art sont inadéquates car elles supposent la décorrélation ou l'indépendance des sources, ce qui n'est pas le cas. Nous tirons parti de la connaissance des sources pour les modéliser par une fonction paramétrique. Nous proposons une première méthode de moindres carrés alternés : les paramètres de formes sont estimés avec l'algorithme de Levenberg-Marquardt, tandis que les amplitudes et les positions sont estimées avec un algorithme inspiré d'Orthogonal Matching Pursuit. Une deuxième méthode introduit un terme de régularisation pour prendre en compte l'évolution lente des positions; un nouvel algorithme d'approximation parcimonieuse conjointe est alors proposée. Enfin, une troisième méthode contraint l'évolution des amplitudes, positions et paramètres de forme par des fonctions B-splines afin de garantir une évolution lente conforme au physique des phénomènes observés. Les points de contrôle des B-splines sont estimés par un algorithme de moindre carrés non-linéaires. Les résultats sur des données synthétiques et réelles montrent que les méthodes proposées sont plus efficaces que les méthodes de l'état de l'art et aussi efficaces qu'une méthode bayésienne adaptée au problème mais avec un temps de calcul sensiblement réduit. / This work is motivated by photoelectron spectroscopy and the study of galaxy kinematics where data respectively correspond to a temporal sequence of spectra and a multispectral image. The objective is to estimate the characteristics (amplitude, spectral position and shape) of peaks embedded in the spectra, but also their evolution within the data. In the considered applications, this evolution is slow since two neighbor spectra are often very similar: this a priori knowledge that will be taken into account in the developed methods. This inverse problem is approached as a delayed source separation problem where spectra and peaks are respectively associated with mixtures and sources. The state-of-the-art methods are inadequate because they suppose the source decorrelation and independence, which is not the case. We take advantage of the source knowledge in order to model them by a parameterized function. We first propose an alternating least squares method: the shape parameters are estimated with the Levenberg-Marquardt algorithm, whilst the amplitudes and positions are estimated with an algorithm inspired from Orthogonal Matching Pursuit. A second method introduces a regularization term to consider the delay slow evolution; a new joint sparse approximation algorithm is thus proposed. Finally, a third method constrains the evolution of the amplitudes, positions and shape parameters by B-spline functions to guarantee their slow evolution. The B-spline control points are estimated with a non-linear least squares algorithm. The results on synthetic and real data show that the proposed methods are more effective than state-of-the-art methods and as effective as a Bayesian method which is adapted to the problem. Moreover, the proposed methods are significantly faster.
Identifer | oai:union.ndltd.org:theses.fr/2018STRAD051 |
Date | 13 December 2018 |
Creators | Mortada, Hassan |
Contributors | Strasbourg, Collet, Christophe, Soussen, Charles |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds