Return to search

Study of an internal combustion engine to burn hydrogen fuel and backfire elimination using a carburetor fuel delivery method

Hydrogen appears to be a clean and sustainable fuel for transportation vehicles, including internal combustion engine vehicles. In this research, a 1986 GMC Sierra truck with a 350CID 5.7L V8, 4 barrel carbureted Chevrolet gasoline engine is converted to burn hydrogen as a sustainable and envirnmentally benign fuel with a shorter energetic cycle. It demonstrates that the problems of backfire can be eliminated using several less expensive methods, such as employing cold spark plugs with reduced spark gap and low temperature cooled valves along with the introduction of water vapor to the mixture.
In the experiments, the internal combustion engine was tested for two fuels: (i) octane 95 gasoline, and (ii) gaseous hydrogen at 99% purity. The vehicle underwent dynamometer tests using both the gasoline and hydrogen fuels for performance comparisons. A comprehensive thermodynamic analysis, through energy and exergy, of the engine is conducted for both cases: (i) with the octane 95 gasoline fuel and (ii) with hydrogen gaseous fuel. The performance results through energy and exergy efficiencies are compared for possible improvements.
The mileage and energy efficiencies calculated and tested using this engine showed that it is more efficient operating on gasoline fuel rather than hydrogen. This is explained fully in the thesis as to the properties of hydrogen and gasoline fuels that differ, and the particular vehicle technology makes this difficult to achieve a reasonable mileage and efficiency. / UOIT

  1. http://hdl.handle.net/10155/96
Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOSHDU.10155/96
Date01 April 2010
CreatorsGarmsiri, Shahriyar
ContributorsDincer, Ibrahim
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0024 seconds