Return to search

Biocontainment system for bacterial antigen delivery carriers

Genetically modified organisms (GMOs) are confined physically in order to contain their spread in nature and to minimise chances of horizontal gene transfer. However, with the potential that GMOs hold as cheap, reliable and efficient micro-machines, their eventual uncontrolled release into the wider space is becoming more likely. Indeed, their application as environmental sensors is largely increasing. Nevertheless, the field of synthetic biology may also afford solutions to the problem. A major potential application of GMOs is the delivery of antigens to human and animal hosts, through the utilization of live, engineered microbes. Recombinant technology is promising for several reasons including their capacity to be less reactogenic, more potent, safer and genetically definable. Also, they have the potential to provide protection against multiple targets simultaneously, are relatively inexpensive and can be eradicated with antibiotics, as the need arises. Besides, delivery of vaccines to mucosal surfaces is more efficient. Mutant Salmonella expressing heterologous antigens have been shown to induce protection against a variety of pathogens. Nevertheless, limited containment systems are available that can be applicable for bacterial antigen carriers. This project aims to design safeguards for the bacterial antigen delivery systems that limit ORF translatability and self-inactivates/destructs upon exit from the host. In this work, double quadruplet codons were suppressed by orthogonal tRNAs, providing a barrier for gene translation in the recipient cells when antigen is horizontally transferred. Furthermore, three kill switches were designed that are activated by a decrease in temperature from 37 °C. First, Sau3AI endonuclease was activated by protein self-splicing at low temperature mediated by Mtu recA intein. The activation of the endonuclease led to three-fold logarithmic decrease in the number of viable cells within two hours of gene expression. Second, RNA-dependent activation of RNase 7 showed a reduction in the number of viable cells at low temperature of three logarithmic folds. RNase 7 was controlled by the cspA 5’UTR, which sequesters ribosome binding site at 37 °C and allows translation at low temperature. Third, CspA 5’UTR was shown to regulate expression of TEV protease at 37 °C and low temperature. This led to bacterial cellular inhibition within two hours of TEV induction and five-fold logarithmic reduction in the number of viable cells at low temperature. In addition, for the first time and contrary to previous studies, the TEV protease was shown to inhibit cellular growth. It was also shown that biofilm formation was drastically impaired by the TEV activity. The three killing switches and the quadruplet translation system are poised to function as robust safeguards for bacterial antigen delivery systems.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:738753
Date January 2017
CreatorsAl-Mamari, Ahmed
ContributorsGallagher, Maurice ; Blakely, Garry
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/28793

Page generated in 0.0019 seconds