In the first study, three different transport systems for bacteria were evaluated. The CLSI M40-A guideline was used to monitor the maintenance of both mono- and polymicrobial samples during a simulated transportation at room temperature that lasted 0-48 h. All systems were able to maintain the viability of all organisms for 24 h, but none of them could support all tested species after 48 h. The most difficult species to recover was Neisseria gonorrhoeae, and in polymicrobial samples overgrowth was an observed problem. The aim of the second study was to study the presence of TSST-1 and three other important toxin genes in invasive isolates of Staphylococcus aureus collected during the years 2000-2012 at two tertiary hospitals. The genes encoding the staphylococcal toxins were detected by PCR, and whole-genome sequencing was used for analyzing the genetic relatedness between isolates. The results showed that the most common toxin was TSST-1, and isolates positive for this toxin exhibited a clear clonality independent of year and hospital. The typical patient was a male aged 55-74 years and with a bone or a joint infection. The third study was a clinical study of the effect of silver-based wound dressings on the bacterial flora in chronic leg ulcers. Phenotypic and genetic silver-resistance were investigated before and after topical silver treatment, by determining the silver nitrate MICs and by detecting sil genes with PCR. The silver-based dressings had a limited effect on primary wound pathogens, and the activity of silver nitrate on S. aureus was mainly bacteriostatic. A silver-resistant Enterobacter cloacae strain was identified after only three weeks of treatment, and cephalosporin-resistant members of the Enterobacteriaceae family were relatively prone to developed silver-resistance after silver exposure in vitro. The last study was undertaken in order to develop an easy-to-use method for simulating the laundering process of hospital textiles, and apply the method when evaluating the decontaminating efficacy of two different washing temperatures. The laundering process took place at professional laundries, and Enterococcus faecium was used as a bioindicator. The results showed that a lowering of the washing temperature from 70°C to 60°C did not affect the decontamination efficacy; the washing cycle alone reduced the number of bacteria with 3-5 log10 CFU, whereas the following tumble drying reduced the bacterial numbers with another 3-4 log10 CFU, yielding the same final result independent of the washing temperature. To ensure that sufficient textile hygiene is maintained, the whole laundering process needs to be monitored. The general conclusion is that all developmental work in the bacterial field requires time and a large strain collection.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-248786 |
Date | January 2015 |
Creators | Tano, Eva |
Publisher | Uppsala universitet, Institutionen för medicinska vetenskaper, Uppsala |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 1098 |
Page generated in 0.0016 seconds