Return to search

Improving the Chatbot Experience : With a Content-based Recommender System

Chatbots are computer programs with the capability to lead a conversation with a human user. When a chatbot is unable to match a user’s utterance to any predefined answer, it will use a fallback intent; a generic response that does not contribute to the conversation in any meaningful way. This report aims to investigate if a content-based recommender system could provide support to a chatbot agent in case of these fallback experiences. Content-based recommender systems use content to filter, prioritize and deliver relevant information to users. Their purpose is to search through a large amount of content and predict recommendations based on user requirements. The recommender system developed in this project consists of four components: a web spider, a Bag-of-words model, a graph database, and the GraphQL API. The anticipation was to capture web page articles and rank them with a numeric scoring to figure out which articles that make for the best recommendation concerning given subjects. The chatbot agent could then use these recommended articles to provide the user with value and help instead of a generic response. After the evaluation, it was found that the recommender system in principle fulfilled all requirements, but that the scoring algorithm used could achieve significant improvements in its recommendations if a more advanced algorithm would be implemented. The scoring algorithm used in this project is based on word count, which lacks taking the context of the dialogue between the user and the agent into consideration, among other things.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-36306
Date January 2019
CreatorsGardner, Angelica
PublisherMittuniversitetet, Institutionen för informationssystem och –teknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds