Tato disertační práce se zabývá vylepšením systémů pro rozpoznávání činností člověka. Současný stav vědění v této oblasti jest prezentován. Toto zahrnuje způsoby získávání digitálních obrazů a videí společně se způsoby reprezentace těchto entit za použití počítače. Dále jest prezentováno jak jsou použity extraktory příznakových vektorů a extraktory pros- torově-časových příznakových vektorů a způsoby přípravy těchto dat pro další zpracování. Příkladem následného zpracování jsou klasifikační metody. Pro zpracování se obecně obvykle používají části videa s proměnlivou délkou. Hlavní přínos této práce je vyřčená hypotéza o optimální délce analýzy video sekvence, kdy kvalita řešení je porovnatelná s řešením bez restrikce délky videosekvence. Algoritmus pro ověření této hypotézy jest navržen, implementován a otestován. Hypotéza byla experimentálně ověřena za použití tohoto algoritmu. Při hledání optimální délky bylo též dosaženo jistého zlepšení kvality klasifikace. Experimenty, výsledky a budoucí využití této práce jsou taktéž prezentovány.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:261240 |
Date | January 2014 |
Creators | Řezníček, Ivo |
Contributors | Baláž, Teodor, Sojka, Eduard, Zemčík, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds