Return to search

Estimating Soil Nitrogen Supply and Fertilizer Needs for Short-Rotation Woody Crops

Short-rotation woody crops are becoming important supplies of hardwood fiber, but little is known about the early nutritional needs of these systems, especially on different site types. The study objectives were, on two young (ages 3-6) sweetgum plantations with contrasting soil types, to 1) determine the plant growth and foliar nutrition response to repeated nitrogen (N) fertilizer applications, 2) determine soil N supply, plant N demand, foliar N resorption, and soil and fertilizer uptake efficiencies, and 3) test a simple N supply model. In order to expand the findings to the range of sweetgum site types, the study objectives were also to 4) evaluate rapid methods for determining N mineralization potential, 5) characterize the soils of 14 sweetgum site types in the Atlantic coastal plain, and 6) review current N fertilizer prescriptions in forestry and recommend strategies for improvement. Two young sweetgum (Liquidambar styraciflua L.) plantations on a converted agricultural field and a pine cutover site in South Carolina were fertilized biannually with three rates of N fertilizer (0, 56, 112 kg N per ha). Fertilization doubled foliar biomass and leaf area on the cutover pine site in the years fertilizer was applied, and stem biomass increased 60%. Critical values, the N concentration required for 90% of optimum growth, is approximately 1.75%. Foliar N uptake increased at both sites when fertilizer was applied. Modeled annual soil N supply was within 20% of that measured on the two plantations even though monthly N supply was not accurately estimated. Potential N mineralization was accurately estimated with a 3-day incubation of rewetted soils that were previously dried, but not by hot salt extraction or anaerobic incubation. Across a spectrum of 14 sweetgum sites, the agricultural fields had lower mineralizable nitrogen (126 kg per ha) than the cutover sites (363 kg per ha). Current N fertilizer prescriptions are not sufficient for repeated fertilizer applications to fast-growing hardwood plantations, but simple models of soil N supply and an N-balance approach may improve prescriptions. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/29402
Date30 October 2002
CreatorsScott, David Andrew
ContributorsForestry, Burger, James A., Alley, Marcus M., Wolfe, Mary Leigh, Kaczmarek, Donald J., Aust, W. Michael, Pu, Mou
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationScott_Dissertation.pdf

Page generated in 0.0018 seconds