While human balance is known to be affected by altered sensory feedback, altered dynamics may also contribute to balance deficiencies in certain populations. The goal of this study was, therefore, to investigate the effects of altered dynamics, namely increased inertia and increased weight, on standing balance. Sixteen normal-weight male participants completed quiet standing in a custom-built backboard under four conditions: baseline, increased inertia only, increased weight only, and increased inertia and weight. Increased inertia did not affect body center of mass movement (COM) or center of pressure (COP) movement, suggesting that no additional ankle torque was necessary to control the increased inertial forces. Increased weight caused increased body COM movement (increased backboard angle range and angular speed) and greater acceleration of the COM (as evidenced by increased COP-COM), requiring an increased level of corrections needed to maintain upright posture (as evidenced by increased COP speed) and increased ankle torques (as evidenced by increased range of COP position). Increasing inertia and weight simultaneously had the same effects as increasing weight except that there was no increased COM movement when both inertia and weight were increased. This indicates that there may be a slight mediating effect of increasing inertia on the extreme changes in balance observed when only weight is increased. These results indicate that altered dynamics of the body have an effect on human standing balance, just as altered sensory function has an effect on balance. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/43365 |
Date | 14 July 2011 |
Creators | Costello, Kerry E. |
Contributors | Biomedical Engineering, Madigan, Michael L., Kraige, Luther Glenn, Nussbaum, Maury A. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Costello_KE_T_2011.pdf |
Page generated in 0.0012 seconds