Return to search

A Modeling Investigation of Obesity and Balance Recovery

Obesity is associated with an increased risk of falls and subsequent injury. Previous studies have shown weight loss and strength training to be beneficial to balance, but knowing which is more beneficial will allow researchers to design interventions to maximize the benefits in terms of balance and reducing risk of falls. Therefore, the purpose of the first study was to evaluate the effects of weight loss and strength training on balance recovery using a combination of laboratory experiments and mathematical modeling. Nine male subjects with BMI 30.1 to 36.9 kg/m² were released from a forward lean and attempted to recover balance using an ankle strategy. Lean angle was increased until subjects required a step or hip flexion to recover balance. The maximum lean angle, θ<sub>max</sub>, was used as the measure of balance recovery capability. Experimental data were used as inputs to an inverted pendulum model of balance recovery. Multiple simulations were used to determine the effects of strength (maximum ankle torque and ankle torque generation rate) and weight loss on θ<sub>max</sub>. Changes in weight and strength were linearly related to changes in θ<sub>max</sub>. A 6.6 ± 0.4% decrease in weight or 6.9 ± 0.9% increase in strength were estimated as required to improve (increase) θ<sub>max</sub> by 1 degree. Based on these results, balance recovery using an ankle strategy can improve with either reductions in weight or increases in strength. In addition, weight loss may be a more effective intervention than strength gain at improving balance recovery capability. The purpose of the second study was to quantify changes in body segment inertial parameters (BSIPs) with weight loss. These data were needed to alter BSIPs in the first study to mimic changes with weight loss. Both before and after weight loss, magnetic resonance imaging scans were acquired along the length of the body and were used to calculate segment masses, COM positions, and radii of gyration. A number of significant changes in BSIPs occurred with weight loss. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/34028
Date30 July 2008
CreatorsMatrangola, Sara Louise
ContributorsBiomedical Engineering, Madigan, Michael L., Nussbaum, Maury A., Davy, Kevin P.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
Relationmatrangola_thesis_etd.pdf

Page generated in 0.0019 seconds